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ABSTRACT

This dissertation is devoted to the problem of behavior design, which is a gen-

eralization of the standard global optimization problem: instead of generating the

optimizer, the generalization produces, on the space of candidate optimizers, a prob-

ability density function referred to as the behavior. The generalization depends on

a parameter, the level of selectivity, such that as this parameter tends to infinity,

the behavior becomes a delta function at the location of the global optimizer. The

motivation for this generalization is that traditional off-line global optimization is

non-resilient and non-opportunistic. That is, traditional global optimization is unre-

sponsive to perturbations of the objective function. On-line optimization methods

that are more resilient and opportunistic than their off-line counterparts typically

consist of the computationally expensive sequential repetition of off-line techniques.

A novel approach to inexpensive resilience and opportunism is to utilize the theory

of Selective Evolutionary Generation Systems (SEGS), which sequentially and prob-

abilistically selects a candidate optimizer based on the ratio of the fitness values of

two candidates and the level of selectivity. Using time-homogeneous, irreducible, er-

godic Markov chains to model a sequence of local, and hence inexpensive, dynamic

transitions, this dissertation proves that such transitions result in behavior that is

called rational; such behavior is desirable because it can lead to both efficient search

for an optimizer as well as resilient and opportunistic behavior. The dissertation

also identifies system-theoretic properties of the proposed scheme, including equilib-

ria, their stability and their optimality. Moreover, this dissertation demonstrates

that the canonical genetic algorithm with fitness proportional selection and the (1+1)

xii



evolutionary strategy are particular cases of the scheme.

Applications in three areas illustrate the versatility of the SEGS theory: flight me-

chanics, control of dynamic systems, and artificial intelligence. In the first application,

this dissertation uses SEGS to evolve gaits for flapping the wings of a flying vehicle,

in a way that is resilient with respect to changes in flight conditions. In the second

application, this dissertation uses SEGS to evolve a disturbance rejection controller

for a xerographic process, in a way that is resilient with respect to internal parameter

variations. In the third application, this dissertation uses SEGS to evolve finite-state

automata that infer a regular grammar, in a way that is resilient with respect to

changes in the grammar. In this latter application, simulation results indicate that

speciation occurs, with evolved finite-state automata exhibiting specific physiology

and morphology that enable grammar inference.

The dissertation results touch upon several open problems in the fields of artificial

life, complex systems, artificial intelligence, and robotics.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Goals

This dissertation is devoted to the problem of efficiently designing an agent’s be-

havior from a search space of possible actions such that the designed behavior is “good”

and is also responsive to changes in what constitutes good behavior. Definitions of

behavior design, efficiency, goodness and responsiveness are made in the following

sections. An alternative formulation of this problem is the efficient determination of

a viable species from a search space of possible organisms such that the species is fit

and adapts to variations in its fitness landscape. A third version of this problem is

the efficient optimization of an unknown objective function by finding a probability

distribution on the search space of candidate optimizers (for instance, a delta function

at the location that optimizes the objective function, i.e., off-line optimization [1])

using a scheme that can handle frequent perturbations of the objective function.

The second problem interpretation suggests evolution; however, ‘Darwinian evolu-

tion may appear inefficient’ [2]. The third problem interpretation suggests contempo-

rary optimization schemes. Off-line optimization techniques [3–7], however, are non-

responsive to perturbations of the objective function in two ways: non-resilience and

non-opportunism, which are illustrated in Figures 1.1 (a) and (b). Specifically, small

changes in the objective function may require changes in the probability distribution

when the optimizer depends continuously or discontinuously on the perturbation, re-

1



spectively. Hence, in practice, the objective function on which a candidate optimizer

is implemented may be different from that for which the candidate optimizer was

determined.

xx∗ x∗′

F (x)

(a) Non-resilience

xx∗ x∗′

F (x)

(b) Non-opportunism

Figure 1.1: Off-line optimization strategies yield results that are non-resilient and
non-opportunistic.

On-line optimization methods [8–14] are not currently designed for resilience and

opportunism, but it is possible to develop on-line optimization methods that are more

resilient and opportunistic than their off-line counterparts through the sequential

repetition of off-line optimization techniques. However, such sequential repetitions

are computationally expensive, a fact that may be shown by either an amortized

analysis [15] or a competitive analysis [8, 9]. Moreover, these methods assume that the

objective function is unvarying during a repetition, and they consequently incorporate

observations about objective function changes, if any, between repetitions. Since the

repetition schedule depends on the time each repetition takes to find a candidate

optimizer, these methods are not truly on-line.

Alternative optimization approaches may involve reinforcement learning [16] and

simulated annealing [17, 18], both of which are off-line and non-resilient. Techniques

inspired by evolution (e.g., genetic algorithms [19–21], evolutionary strategies [22–25],

and variations of these two) have the following features: 1) [26] notes that the use

of ‘the Darwinian principle does not guarantee successful optimization,’ 2) [27] states

that evolution optimization theories (on which these techniques are based) are an

2



attempt to understand the diversity of life rather than demonstrate that organisms

optimize, 3) [25] opines that ‘searching for peaks depicts evolution as a slowly advanc-

ing, tedious, uncertain process,’ and 4) evolutionary computation for dynamic fitness

landscapes is a relatively new and uncharted area of study (for a recent overview, see

[28]).

Therefore, the combination of efficient search and resilience appears difficult to

achieve. Hence, the motivation for this dissertation is to design a behavior both

efficiently and responsively. A behavior is sought that, when used in an evolution-

ary process under certain technical conditions, is a way of optimally searching for a

desirable outcome, and is successful at finding a desirable outcome even if outcome

desirability changes. Thus, the goals of this dissertation are:

• To present a behavior design technique that is efficient, on-line, inexpensive and

yields behaviors that are resilient and opportunistic.

• To demonstrate the versatility of the technique through its application in prob-

lems from the robust control of dynamic systems, flight mechanics, and artificial

intelligence.

1.2 Technical Approach and Impact

This dissertation demonstrates that rational behavior [29] is an example of the

sought behavior. The work shows that the primary benefit of employing rational

behavior is its capacity for optimal search, where optimality is defined as the quickest

possible prior information trade off for reduced search effort. A secondary benefit is

that rational behavior is a sufficient condition for resilience and opportunism. The

work then proposes an on-line behavior design technique based on the novel concept of

selective generation, which utilizes the ratio of the fitness values of two candidates and

a parameter called the level of selectivity. In the limit as the level of selectivity tends

3



to infinity, the scheme guarantees that the selected candidate is a global optimizer.

Hence, the scheme presented in this dissertation is a generalization of standard opti-

mization. Although rational behavior suggests dynamic transitions that are based on

global knowledge, this dissertation proves that rationality may be achieved through a

sequence of dynamic transitions using only local knowledge of the objective function.

Thus, the proposed scheme is also computationally inexpensive at each step.

The implication is that the proposed scheme, when formulated appropriately, is

capable of optimally searching for a desirable behavior, a fit species, or an optimizer

of an objective function. Since the dissertation also shows that the proposed scheme

generalizes genetic algorithms and evolutionary strategies, there is a potential broader

impact in these fields as well. Moreover, rational behavior may also provide greater

insight into natural evolution, with applicability to the evolution of artificial life.

1.3 Original Contributions

The original contributions of this work include the following.

• A novel mathematical definition of selection, the Select function, for use in

behavior design.

• A demonstration that the canonical genetic algorithm with fitness proportional

selection and the (1+1) evolutionary strategy are particular cases of a scheme

utilizing the Select function.

• A proof that selective generation is a sufficient condition for rational behavior.

• A demonstration that rational behavior can lead to optimal search.

• A novel mathematical definition of resilience and opportunism.

4



• A proof that rational behavior is a sufficient condition for resilience and oppor-

tunism.

• An analysis of the effect that the level of selectivity has on resilience and op-

portunism.

• An examination of domains where resilience and opportunism are important.

• The identification of system-theoretic properties of a selective generation scheme,

including equilibria and their stability and optimality properties.

• The evolution of flapping wing parameters for the purpose of hovering and

trajectory-tracking by a flapping wing vehicle.

• A benchmark comparison of the canonical genetic algorithm with fitness pro-

portional selection, the (1+1) evolutionary strategy, and the proposed selective

generation scheme.

• The evolution of a controller that is robust to external disturbances or internal

parameter variations.

• The evolution of finite-state automata that exhibit an elementary form of arti-

ficial intelligence: the inference of regular grammars.

• A demonstration that selective generation causes speciation among the grammar-

inferring finite-state automata.

• A demonstration that selective generation results in the emergence of physiology

and morphology among the grammar-inferring finite-state automata.

• A demonstration that selective generation ensures finite-state automata re-

silience and adaptability to changes in grammar.

5



1.4 Problem Definition

Let X be a search space. The problem of behavior design seeks 1) a probabil-

ity density function (referred to as the behavior) φX : X → R
+ that accomplishes

specified objectives, and 2) dynamic transition laws that cause the variable x to be

distributed according to φX , i.e., to exhibit the behavior specified by φX .

Let z : X → R be an unknown, computable, and possibly changing function that

we are interested in. Suppose that we are given an element Z in the image of z, and

we wish to find x ∈ X such that z(x) = Z, or such that ||z(x)−Z|| is small. Formally,

we want to design a behavior φX that achieves a known expected value Y , i.e.,

E φX
[||z(x)− Z||] = Y, (1.1)

and we refer to this expectation as goodness. Let y(x) = ||z(x)− Z||.

We also desire the behavior φX to be responsive to perturbations in z, i.e.,

∂φX

∂z
6= 0, (1.2)

an inequality that will be later explored in more detail as resilience and opportunism.

We allow the behavior design method to employ a function F : X → R
+, a

real-valued, positive fitness function that is a transformation of the function z. The

scheme to find φX should be efficient in that it trades off prior information about

X for search effort savings as quickly as possible. In the theoretical discussion that

follows, we keep F arbitrary to maintain generality; however, we would also like to

determine if efficient behavior design specifies the transformation between z and F .

6



1.5 Dissertation Outline

The remainder of the dissertation is as follows. Chapter 2 highlights the appli-

cable literature. Chapter 3 presents the fundamentals of a theory of selective evo-

lutionary generation systems that utilizes a novel scheme for fitness-based selection,

and documents how selective evolutionary generation systems are different from other

evolutionary computation strategies in the literature. Chapter 4 proves that a suf-

ficient condition for resilience and opportunism is rational behavior, explains why

rational behavior is desirable, demonstrates that resilience and opportunism may be

achieved inexpensively at each step of the scheme, discusses the relationship with

Markov Chain Monte Carlo methods, illustrates the theory by means of an analyt-

ically treated example, and extends the theory to facilitate a comparison with the

literature. Chapter 5 utilizes the theory to optimize flapping wing gaits, and also

benchmarks the proposed scheme. Chapter 6 applies the theory to evolve robust con-

trollers for a dynamic system. Chapter 7 implements the theory to solve the problem

of resilient grammar inference. Chapter 8 presents conclusions. Appendices A and B

contain proofs of the theorems of Chapter 4 and selected pseudocode for Chapter 7,

respectively.
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CHAPTER 2

RELEVANT LITERATURE

The purpose of this chapter is to acquaint the reader with the current literature on

the main topics of this dissertation. The following sections highlight notable references

in a relevant field, and outline the relationship between the citations and this work.

Due to the number of related fields and the existence of recent survey papers in each

field, the sections in this chapter serve as selective guides to the literature rather than

exhaustive descriptions. The applicable literature for secondary topics is deferred

until these subjects are discussed.

2.1 Self-X Systems

Self-X systems are systems that are capable of self-assembly, self-organization,

self-reconfiguration, self-repair, self-replication, or self-reproduction. The origins of

this dissertation stem from the study of self-reproducing systems, a field inspired by

the work of John von Neumann [30]. A comprehensive overview of self-replication

is documented in [31–33]. In Aerospace Engineering, self-reproducing systems hold

much promise for extraterrestrial colonization. Several space agency roadmaps, of

which [34] is typical, suggest that individual countries will deploy advanced robots

as-needed to expand the size of an established colony. However, it is well known

that for every unit mass of payload to be launched into space, eighty additional units

of mass are required to be launched as well [35] — hence, the motivation to endow
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robots with the capacity for self-reproduction. These machines would be able to

utilize on-site resources to enlarge their numbers when deemed necessary for a given

task. Extraterrestrial systems with such capability are less dependent than traditional

colonies on the fiscal constraints of multiple launches of robots. Self-reproduction

may therefore provide a highly cost-effective solution to the problem of establishing

extraterrestrial colonies.

In a landmark conceptual study on a self-replicating lunar factory [36], a sys-

tem that included paving, mining, casting, and mobile assembly and repair robots

was proposed. Inspired by this work, [37] suggested a factory system comprising

self-replicating multi-functional robots that could mine and transport materials and

components within a lunar manufacturing facility. The work also demonstrated the

feasibility of a self-replicating robot with a prototype made of LEGO Mindstorms

components. At the same time (and in the years since), a number of researchers have

developed modular self-replicating, self-assembling and/or self-reconfigurable robots

(see, for instance, [38–51]). A current survey of the state of the art and the challenges

facing modular, self-reconfigurable robot systems is given in the Grand Challenges of

Robotics article [52], and in [53]. Other reviews are also available [54–56].

As the references above and those therein indicate, the focus has shifted to prov-

able control of the modules of a single self-reconfigurable robot — the realization of

various topologies [48], efficient and distributed control of a large number of mod-

ules [57, 58], recovery from module failures [59], and even module self-repair [60, 61].

Approaches for local control include reinforcement learning [62], cellular automata

[63], and hormone-inspired swarming for self-organization [64]. This shift in focus to

local control is due, in part, to the difficulty of achieving self-reproducing artificial

systems in unstructured environments [65]. However, if one assumes that a colony of

self-reproducing robots is technically feasible, then questions about the emergence of

various behaviors arise (for example, [66] discusses the evolution of communication
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in robots).

By virtue of the harsh environment an extraterrestrial robotic colony operates

in, self-reproducing robots need to learn, adapt, and possibly evolve to be tolerant

of external disturbances that can affect the collective’s overall goals. Hence, this

dissertation examines the performance of self-reproducing entities that evolve both

intelligence and resilience.

2.2 Resilience

The concept of resilience was first introduced in the seminal work [67], and a recent

survey of the many definitions of resilience in the literature is available in [68]. Here,

as in [69], two distinct meanings of resilience are identified: 1) engineering resilience,

the time or rate at which a system returns to steady state equilibrium following a

disturbance (i.e., a measure of disturbance recovery), and 2) ecological resilience, the

amount of disturbance that can be absorbed by a system before transitioning to a

new equilibrium (i.e., a measure of disturbance rejection). This dissertation examines

both of these ideas, but does so after adopting a more general notion of resilience: a

system is considered to be resilient if it exhibits a response to a disturbance. As long

as such a response exists, the characteristic nature of the systems will ensure that

either recovery from the disturbance takes place, or a transition to a new optimal

equilibrium occurs.

Robustness in complex systems has been previously studied, using the Highly Op-

timized Tolerance conceptual framework for example [70, 71]. The results document

complex systems that are generally robust, but an inescapable characteristic of the

systems is their fragile nature, in that small disturbances can cause catastrophic cas-

cading failures. However, there are numerous instances of autonomous robustness as

well as resilience to small and large environment fluctuations in complex natural sys-
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tems. Examples include physiological regulation in multi-cellular organisms [72, 73];

group regulation in colonies of social insects [74–76]; the evolution of species through

adaptation and natural selection [77–79]; and the rebounding of complex systems

from earthquakes, tsunamis, hurricanes, asteroid strikes, etc. [80, 81]. The apparent

lack of resilience in a robust complex system further motivates this work.

2.3 Rational Behavior

The theory of rational behavior [82–84] deals with the axiomatic behavior of indi-

vidual elements that take decisions in a decision space. The theory seeks to bypass

complex calculations, favoring instead the computationally simplest mechanisms that

result in rationality. Rationality here is defined as the selection of the most favorable

decision among all possible decisions. For a recent comprehensive review of the field,

see [85].

This dissertation utilizes the more general theory developed in [29]. A dynamic

system with a decision space is rational if each trajectory of this system in the space

is

1. ergodic: the trajectory explores all decisions in the decision space, and

2. selective: the trajectory slows down in the vicinity of the most advantageous

decisions, i.e., the ratio of the mean time of stay of the trajectory in the vicinity

of a more favorable decision to the mean time of stay of the trajectory in the

vicinity of a less favorable decision is larger than unity.

Hence, the theory suggests the possibility of rapid convergence to the optimal state

of a dynamic system. Unfortunately, global system knowledge may be required to

determine how advantageous a state is.

The hypothesis that the theory of [29] yields additional benefits when suitably

11



employed for optimization is validated in this dissertation. In addition, it is shown

that local knowledge of the objective function is sufficient to guarantee rationality.

Reference [29] also sought to explain a remarkable property of the collectives that

appeared in nature. These collectives, which had different fractions of professions (as

in beehives for example), maintained an appropriate fractional distribution among

the various social functions even if one of the castes was removed. Using fractional

interactions, the theory examines the behavior of a collective and identifies the prop-

erties of systems of many elements. This is still an important topic; recent articles on

the subject now incorporate the role of evolution and natural selection [86, 87]. This

dissertation does indeed account for the processes of evolution and natural selection

when demonstrating how to design a global behavior from local interactions.

It should be noted that the theory of rational behavior is not intended to model

human rationality because ergodicity and selectivity may not define the behavior of

an individual [88–92]. The term “rational behavior” arises in other contexts as well,

for instance, game theory [93].

2.4 Evolution Theories

The re-discovery of Mendel’s genetic experiments with pea plants [94] led Fisher

[95], Wright [96] and Haldane [97] to search for a mathematical model of Darwin’s the-

ory of evolution and natural selection [77]. Their combined efforts laid the foundation

for population genetics [98]. Notably, their work derives a formula for the probabil-

ity that a mutation subject to natural selection becomes fixed in a population (see

the summary [99]). They found that mutations that positively affect the number of

offspring of a progenitor are selectively favored, mutations that negatively affect the

number of offspring of a progenitor are selectively disfavored, and mutations that are

neutral become fixed in a population with a probability equal to the initial frequency
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of the mutation. The prominent role offered to natural selection as a mechanism for

evolution is reflected in the theory contained in this dissertation.

The neutral theory of molecular evolution (NTME) [100, 101] assumes that nearly

all mutations are either highly deleterious or neutral. Since harmful mutations do not

affect genetic variation within and between species, and adaptive mutations are rare

and assumed to fix quickly in a population, it is the stochastic fixation of selectively

neutral mutations that is the source of evolutionary change. NTME predicts that

the rate of molecular evolution is independent of population size [99]. Although this

dissertation does not consider neutral mutations to be responsible for the evolutionary

process that is described, like NTME, population size is not considered to be a factor

for evolution.

Neutral molecular evolution is also predicted by NTME to be linear in time, a use-

ful fact for dating the relative divergence of different populations [99]. Similarly, this

dissertation uses a system’s generation index to directly measure time, a simplification

that facilitates speciation analysis. In both NTME and this dissertation, evolution

occurs more rapidly when selective pressures are low (i.e., the population fraction of

neutral mutations in NTME is high) and more slowly when selective pressures are

high (i.e., the population fraction of neutral mutations in NTME is low).

A relatively recent evolution theory defines quasispecies, the equilibrium mutant

distribution that is generated by a specific mutation-selection process describing the

erroneous replication of macromolecules [102, 103]. Template sequences for replication

with different replication rates initially exist. The presence of mutations typically pre-

vents the fastest replicating sequence from having the highest population frequency.

Instead, erroneous replication can lead to the creation of new sequences or the du-

plication of other sequences in the ensemble. Unlike Darwinian evolution, selection

operates on the whole quasispecies (the ensemble of mutants) rather than on an indi-

vidual sequence [103]. Thus, fitness is a property of the quasispecies, and evolution
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is guided towards a known maximally fit sequence.

This dissertation produces a distribution of fit offspring too. However, the process

acts in a way that is contrary to the hill-climbing quasispecies method described above,

and does not make use of a known maximally fit element.

2.5 Grand Challenges and Open Problems

The original contributions in Section 1.3 — demonstrating the evolutionary emer-

gence of intelligence, organization and resilience — touch upon a number of grand

challenges and open problems documented in the literature. Below, we list several

of these problems by quoting in italics from the sources cited, identifying the prob-

lem number in the associated reference, and outlining the relationship between the

problem and this work.

1. Artificial Life [104]

Problem 11: Demonstrate the emergence of intelligence and mind in an arti-

ficial living system. Here, the relationship is that grammar inference (Section

7.1) is an elementary form of artificial intelligence [2] and selective evolution-

ary generation mimics generation dynamics in living organisms [105].

2. Complex Systems [106]

(a) Problem 2.1: One of the most important principles is that global phenom-

ena can emerge out of local interactions; how do we build artificial systems

(or manage natural ones) so that the properties that emerge are the ones

we want? The selective evolutionary generation scheme employed in this

work utilizes a sequence of local, inexpensive, dynamic transitions that

result in global behaviors such as resilience and opportunism.
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(b) Problem 2.4: Optimization methods are usually preoccupied with finding

the very best solution possible, whereas living organisms usually seek only

“adequate” solutions. Genetic algorithms and other biologically inspired

methods for search and optimization adopt a biological approach implicitly.

However, the full requirements, and implications of, “adequacy” remain

to be explored. The notion of behavior design, which is addressed by the

selective evolutionary generation technique proposed in this work, is a gen-

eralization of the standard global optimization problem: instead of gener-

ating the optimizer, the generalization produces, on the space of candidate

optimizers, a probability density function referred to as the behavior. The

generalization depends on a parameter, the level of selectivity, such that

as this parameter tends to infinity, the behavior becomes a delta function

at the location of the optimizer (see Chapter 4).

(c) Problem 2.5: We suspect, but this has yet to be shown, that an evolutionary

process occurs in which a process of random additions and collapses yields

systems that are both complex and viable. The discussion of this problem

alludes to species diversity as a reflection of complexity. In Section 7.3.2,

we experimentally show that the speciation of grammar-inferring finite-

state automata occurs, and is a consequence of resilience to changes in the

grammar.

(d) Problem 2.6: A general question is whether specific conditions lead to par-

ticular kinds of structure (e.g. trees, cycles, etc.), organization and behav-

ior. The selectively evolved grammar-inferring finite-state automata all

have common physiological and morphological traits that enable them to

recognize the grammar correctly.

(e) Problem 3.3: Disturbances such as fires and cometary impacts flip the

landscape from a connected phase, in which selection predominates, to a
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disconnected phase, in which variation predominates. Many optimization

algorithms (e.g., simulated annealing) exploit phase changes in the connec-

tivity of the solution landscape to mediate between global and local search.

Such analogies raise the prospect of identifying general processes that gov-

ern adaptive processes in many different kinds of systems. The concept

of a “phase change,” either as a result of a disturbance or as a tool to

transition between local and global searches, is also employed in selective

evolutionary generation. The method results in phases where either selec-

tion or variation (i.e., ergodicity) is dominant; the changes between these

phases suggest the phenomenon of speciation, defined later in this work.

3. Artificial Intelligence (AI) [107]

(a) Rodney Brooks’ Challenge 1: Considerations of how future architectures

might be designed so that software is self-configurable, and then even per-

haps self-optimizing. Selective evolutionary generation is inherently self-

optimizing (Chapter 4). The results of this dissertation suggest that soft-

ware that employs selective evolutionary generation of finite-state automata

may lead to a solution to this challenge.

(b) Tom Mitchell’s Challenge 3: Let’s build agents that exhibit life-long ma-

chine learning, rather than machine learning algorithms that learn one

thing and then get rebooted. Since machine learning includes grammar in-

ference [108, 109], this challenge requires that new grammars be recognized

whenever they change, which is the focus of Chapter 7.

4. Robotics [52]

Self-repairing subproblem of Grand Challenge 4 (modular self-reconfigurable

robot systems): Besides reconfiguring itself into a new shape, a system com-

prised of modular robots would be able to recover from serious damage, such
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as that which might result from an external collision or internal failure. The

sub-problem refers to two notions: that of resilience, which is at the heart

of this work, and that of a diagnostic intelligence, which may use pattern

recognition techniques to classify failure modes. Grammar-inferring finite-

state automata algorithms were pioneered in the field of syntactic pattern

recognition [110], validating the example in Chapter 7.

The preliminary results reported in this work suggest that a selective evolutionary

strategy may be a tool for addressing the above open problems.
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CHAPTER 3

THEORETICAL FOUNDATIONS OF

SELECTIVE EVOLUTIONARY GENERATION

SYSTEMS

3.1 Theory of Selective Evolutionary Generation

Systems

The theory in this section is based on concepts from Generation Systems Theory

(GST) [111]. GST formalizes the self-reproduction of cells, a term describing any

entity that is capable of producing an offspring regardless of its physical nature. A

robot, a bacterium, or even a piece of software code is considered to be a cell in

this theory if they can each produce another robot, bacterium or some lines of code

respectively. These cells utilize resources to self-reproduce. A selected resource is

manipulated by the parent cell via an embedded generation action to produce an

outcome.

We now extend these ideas to develop a theory of selective evolutionary genera-

tion systems. For behavior design, a cell is any element of the domain of the reward

function and a resource is any input that facilitates a transition between cells. Fur-

thermore, it is possible that resources are chosen probabilistically. Consistent with

these notions, we make the following definition.

Definition 3.1. An evolutionary generation system is a quadruple E = (X,R, P,G),

where
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• X is a set of n cells, X = {x1, x2, . . . , xn};

• R is a set of m resources, R = {r1, r2, . . . , rm}, that can be utilized for cell

reproduction;

• P : R → (0, 1] is a probability mass function on R, given by P (ri) = Pr[R =

ri] = pi,
m
∑

k=1
pk = 1; and

• G : X×R→ X is a generation function that maps a parent cell and a resource

into a descendant cell outcome.

Use of the adjective evolutionary here is consistent with biology [105], where

evolution is defined as the genetic changes in a biological population that occur every

generation due to genetic changes from parent to descendant. Note that for each

resource r ∈ R, we assume that an inexhaustible supply is available. This assumption

is consistent with GST, which does not specify quantities of resources or cells.

Example 3.1. A random walk over Z
ν is an example of an evolutionary generation

system. Take X = Z
ν , R = {±ei, 1 ≤ i ≤ ν} (where ei are the standard basis

vectors for Z
ν), let P be the uniform probability distribution over R, and define

G : X × R → X : (x, r) 7→ y = x + r. The sequence of cells over the generations of

this evolutionary generation system becomes a random walk.

Let (rµ) = (r1, r2, . . . , rµ) be a sequence of µ resources from R. We define the

notation

G (x, (rµ)) := G(. . . G(G(x, r1), r2) . . . , rµ) (3.1)

to denote the cell produced by x using sequence (rµ). This is illustrated in Figure 3.1

as a directed graph.

Definition 3.2. The set of cells, X, of the evolutionary generation system E =

(X,R, P,G) is reachable through G and R if, for all pairs (x1, x2) ∈ X2, there exists

k ∈ N and a sequence (rk) ∈ R such that x2 = G (x1, (rk)).
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x

r1 r2 rµ

G (x, (rµ))G (x, r1) G (x, (r2)) . . .

Figure 3.1: The directed graph of G (x, (rµ)).

Note that reachability of the cells of an evolutionary generation system is identical

to that of reachability of the vertices of a directed graph in Graph Theory [112].

In Definition 3.1, the restriction that the offspring of a cell be itself a cell implies

that the set of cells is closed [113], since there is no feasible transition to any element

outside X. If the set of cells is also reachable, then X is said to be irreducible [113].

The previous example of a random walk over Z
ν is an example of an irreducible

evolutionary generation system.

We associate each cell with a non-zero, positive performance index that is a mea-

sure of the fitness of the cell, F : X → R
+. The notion of fitness facilitates the

following novel mathematical definition of selection.

Definition 3.3. Given a cell set, X, and a fitness function F : X → R
+, let Select :

X ×X ×N→ X be a random function such that if x1 ∈ X and x2 ∈ X are any two

cells, and N ∈ N is the level of selectivity, then

Select(x1, x2, N) =



















x1 with probability F (x1)N

F (x1)N+F (x2)N ,

x2 with probability F (x2)N

F (x1)N+F (x2)N .

(3.2)

We can now define a selective evolutionary generation system (SEGS).

Definition 3.4. A selective evolutionary generation system is a quintuple

Γ = (X,R, P,G, F ), where

• (X,R, P,G) is an evolutionary generation system;

• F : X → R
+ is a function that evaluates cell fitness;

• the set of cells, X, is reachable through G and R; and

20



• the dynamics of the system are given by

X (t + 1) = Select(X (t), G(X (t),R(t)), N). (3.3)

In (3.3), X (t) denotes the realization of a random cell variable at time t, R(t)

denotes the realization of a random resource variable at time t, G(X (t),R(t)) denotes

the offspring of the realized random cell utilizing the realized random resource at time

t, and X (0) has a known probability mass function.

Also in (3.3), the probability of a cell realization at some future time given the

present cell realization is conditionally independent of the past time history of cell re-

alizations. Thus, the dynamics of a SEGS form a discrete-time homogeneous Markov

chain [114]. This property is useful for the SEGS analysis conducted in Section 4.2.

The two central tenets of Darwin’s theory of evolution [105] are embodied in

Definition 3.4.

1) Undirected variation via the generation function. Permissible undirected varia-

tions include

• mutations of all or part of a cell,

• recombination of the constituent elements of a cell with the constituent ele-

ments of another (resource) cell,

• inheritance of all or part of a cell when the generation function maps all or

part of a cell to itself, and

• drift of the constituent elements of a cell, as certain elements drift or become

fixed due to the nature of the probability mass function over the resource set.

That is, we impose no restrictions on the nature of the undirected variation pro-

cess, thereby capturing all biological and computational mechanisms for creating

diverse offspring. As we shall see, even flow, the sudden addition or removal of
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cells, is captured by our theory, since this process may be modeled by unexpected

perturbations of the fitness function.

2) Natural selection via the Select function.

The Select function has a number of interesting properties, including:

• For all N ,

Pr[Select(x1, x2, N) = x1]

Pr[Select(x1, x2, N) = x2]
=

(

F (x1)

F (x2)

)N

. (3.4)

That is, the ratio of the probabilities of selecting any two cells is equal to the

ratio of their respective fitnesses raised to the power N . This property is called

local rationality.

• For N = 0, the values of F (x1) and F (x2) are irrelevant. That is,

Pr[Select(x1, x2, 0) = x1] = 1/2, and (3.5)

Pr[Select(x1, x2, 0) = x2] = 1/2. (3.6)

• When N →∞, if F (x1) > F (x2) then

Pr[Select(x1, x2, N) = x1]→ 1. (3.7)

On the other hand, if F (x1) < F (x2) then

Pr[Select(x1, x2, N) = x2]→ 1. (3.8)

• If F (x1) = F (x2) then, for all N ,

Pr[Select(x1, x2, N) = x1] = 1/2, and (3.9)

Pr[Select(x1, x2, N) = x2] = 1/2. (3.10)
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The level of selectivity, N , has a biological interpretation as well. Suppose that

the fitness of a cell is measured by the total number of descendants produced over

k generations, k ≥ 1. This prolificity is typically called future reproductive value or

fecundity [105]. When a colony is initiated by two self-reproducing progenitors x1

and x2, the ratio of the descendant population fractions after k generations equals

the ratio of the respective future reproductive values,

(

F (x1)

F (x2)

)

. (3.11)

After k generations, the ratio of the probability of choosing, by random sampling, a

descendant of x1 to the probability of choosing a descendant of x2 is equal to the

ratio of the descendant population fractions (3.11). Correspondingly, the ratio of the

probability of selecting x1 at the initial time to the probability of selecting x2 at the

initial time, (3.4), is identical to the ratio of the respective prolificities, (3.11), with

N = 1.

Now consider the following sequence of operations.

1. Initiate a colony with two self-reproducing progenitors x1 and x2, and let de-

scendants be produced for k generations.

2. Extract a sample from the resulting population. Use the sample to initiate a

second colony, and let descendants be produced for k generations.

3. Iterate the sample and colony initiation procedure until an N th colony is pro-

duced.

Then, the ratio of the probability of selecting a descendant of x1 to the probability

of selecting a descendant of x2 using this multi-step process becomes

(

F (x1)

F (x2)

)(

F (x1)

F (x2)

)

. . .

(

F (x1)

F (x2)

)

=

(

F (x1)

F (x2)

)N

, (3.12)

23



and it is now clear that N represents the number of selections that are made, assuming

a k-generation fecundity interpretation of fitness.

A recent, well-publicized, biological experiment that fits this multi-selection model

is [115]. Two polyethylene degrading strains of bacteria were isolated in this study as

a result of the repeated selections of the progeny of soil bacteria that were forced to

feed on a polyethylene enriched medium. The biodegradation of plastic is an example

of an important engineering problem that, while previously difficult to solve, can now

be tackled with the novel approach in this dissertation.

3.2 Comparative Literature Study

A SEGS as described by Definition 3.4 can be utilized as an evolutionary optimiza-

tion algorithm (Section 4.2) to take advantage of its guaranteed properties. There are

works in the optimization literature that appear to be similar: reinforcement learning

[16], simulated annealing [17, 18], genetic algorithms [19–21], and evolutionary strate-

gies [22–25]. Comparisons between these optimization methodologies and a SEGS

approach can be made, and this section is devoted to providing such comparisons to

outline the distinctions between approaches. For each of the optimization method-

ologies, we quantify the ratio of the probability of selecting a candidate optimizer of

the objective function to the probability of selecting the optimizer’s offspring. By

comparing this resultant ratio to (3.4), we demonstrate the originality of our theory

of evolutionary generation systems.

3.2.1 Reinforcement Learning

In reinforcement learning (RL) [16], a decision-making agent takes actions in an

environment and receives a corresponding reward. The traditional RL problem is

to determine the best policy or sequence of actions that maximizes the total reward.
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There are two major differences between our work and RL. First, evolutionary gen-

eration systems theory does not allow changes in the tactics of individual cells, since

there are fixed, probabilistic rules for generation outcomes in place. That is, the gen-

eration action taken by a particular cell is always the same but the outcome varies

probabilistically due to selection. Second, RL seeks the long-term maximization of

reward of a policy of cell-action pairs, while a SEGS focuses on probabilistically in-

creasing the short-term reward from one cell-action pair. The different goals have

consequences for responsiveness: an RL approach may not adapt the optimal policy

if individual cell-action pair rewards are perturbed.

To facilitate a comparison between RL and a SEGS, consider the following deter-

ministic reinforcement learning problem. Let x1 and x2 be the labels of two terminal

cells, and let the current cell, also labeled x1, be capable of a one-step transition to

either of the two terminal cells. Hence, there are two possible policies: 1) a transition

from x1 to x1, and 2) a transition from x1 to x2. Let the reward of cell xi be F (xi).

Using value iteration, the cost-to-go of the current cell with policy 1) is

V1 = F (x1) + F (x1) = 2F (x1), (3.13)

and the cost-to-go of the current cell with policy 2) is

V2 = F (x1) + F (x2). (3.14)

Since RL chooses the policy with maximum reward, the ratio of the probability of

selecting the terminal cell x1 to the probability of selecting the terminal cell x2 is

Pr[x1 is selected]

Pr[x2 is selected]
=

ind (2F (x1) > F (x1) + F (x2))

ind (F (x1) + F (x2) ≥ 2F (x1))
, (3.15)
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where ind denotes the indicator function, satisfying

ind(True) = 1, (3.16)

ind(False) = 0. (3.17)

The ratio in (3.15) is taken to be∞ if the denominator is zero. This ratio is different

from (3.4).

3.2.2 Simulated Annealing

The simulated annealing algorithm [18] randomly samples the search space at xi,

evaluates F (xi), and accepts new candidate optimizers xi according to the Metropolis

criterion. This criterion specifies that cells with better fitness are always accepted,

while less fit cells are accepted with a probability that depends on the relative fitness

with respect to the current cell x1, and a “temperature” parameter T . The equation

for the probability of selecting the less fit cell, x2, is

Pr[x2 is selected] = pSA = exp

(

F (x2)− F (x1)

T

)

, (3.18)

whenever F (x1) > F (x2). Therefore, decreasing the temperature or increasing the

relative fitness decreases the acceptance probability of less fit states.

The ratio of the probability of selecting the current candidate optimizer x1 to the

probability of selecting another candidate optimizer x2 is

Pr[x1 is selected]

Pr[x2 is selected]
=

1− (ind (F (x2) ≥ F (x1)) + ind (F (x1) > F (x2)) pSA)

ind (F (x2) ≥ F (x1)) + ind (F (x1) > F (x2)) pSA

. (3.19)

This ratio is different from (3.4).
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3.2.3 Genetic Algorithms

The canonical genetic algorithm [19] models each cell of the search space, xi, as a

binary string of length l to which a fitness value F (xi) is associated. The algorithm

outline [116] follows:

1: choose an initial population

2: determine the fitness of each individual

3: perform selection

4: repeat

5: perform crossover

6: perform mutation

7: determine the fitness of each individual

8: perform selection

9: until some stopping criterion applies

We are interested in the probability that a cell, x1, of the population at Line 4

is chosen to be a member of the population for the next generation (i.e., after one

iteration of the repeat loop) without experiencing crossover or mutation. We then

compare this probability to the probability that an offspring of x1 is a member of the

population at the next generation. Let the probability of crossover of x1 with another

binary string be pc ∈ (0, 1), and let mutation of the j-th bit of x1 occur independently

with probability pm ∈ (0, 1).

Of the many kinds of selection processes (e.g., fitness-proportional selection, tour-

nament selection, or truncation selection) that can be applied to the cells of a pop-

ulation, Y , let us first consider fitness-proportional selection. The probability of

considering x1 with this selection process is

Pr[x1 is considered] =
F (x1)
∑

y∈Y
F (y)

. (3.20)
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Hence, the probability that an unchanged candidate optimizer, x1, is a member of

the population for the next generation is

Pr[x1 is selected] = (1− pc)(1− pm)l F (x1)
∑

y∈Y
F (y)

. (3.21)

If x2 is an offspring of x1 that undergoes crossover with probability pc, undergoes mu-

tation of k bits with probability pm, and is subjected to fitness-proportional selection,

it becomes a member of the population for the next generation with probability

Pr[x2 is selected] = pcp
k
m(1− pm)l−k F (x2)

∑

y∈Y
F (y)

. (3.22)

Thus, the ratio of the probability of selecting x1 to the probability of selecting x2

becomes

Pr[x1 is selected]

Pr[x2 is selected]
=

(1− pc)

pc

(1− pm)k

pk
m

F (x1)

F (x2)
= K

F (x1)

F (x2)
, K > 0. (3.23)

Although the equation above is similar to (3.4), it demonstrates that in the canonical

genetic algorithm using fitness-proportional selection, the ratio of selection probabil-

ities is proportional to the fitness ratio. In (3.23), if K = 1 we obtain a particular

case of (3.4) where N = 1.
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With tournament selection, the probability of considering x1 is

Pr[x1 is considered] =


























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

















































ps ∈ (0, 1), if, ∀y ∈ Y, F (x1) > F (y),

ps(1− ps), if |{y ∈ Y | F (y) > F (x1)}| = 1,

ps(1− ps)
2, if |{y ∈ Y | F (y) > F (x1)}| = 2,

. . . . . .

ps(1− ps)
|Y |−1, if |{y ∈ Y | F (y) > F (x1)}| = |Y | − 1.

(3.24)

Using rank(x1) to denote |{y ∈ Y | F (y) > F (x1)}|, the probability that an unchanged

candidate optimizer, x1, is a member of the population for the next generation is

Pr[x1 is selected] = (1− pc)(1− pm)lps(1− ps)
rank(x1). (3.25)

If x2 is an offspring of x1 that undergoes crossover with probability pc, undergoes

mutation of k bits with probability pm, and is subjected to tournament selection, it

becomes a member of the population for the next generation with probability

Pr[x2 is selected] = pcp
k
m(1− pm)l−kps(1− ps)

rank(x2). (3.26)

Thus, the ratio of the probability of selecting x1 to the probability of selecting x2

becomes

Pr[x1 is selected]

Pr[x2 is selected]
=

(1− pc)

pc

(1− pm)k

pk
m

(1− ps)
rank(x1)

(1− ps)rank(x2)
=

K(1− ps)
rank(x1)−rank(x2), K > 0. (3.27)

This result is different from (3.4).
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With truncation selection, the probability of considering x1 is

Pr[x1 is considered] = ind

(

rank (x1) <
|Y |

2

)

. (3.28)

Hence, the probability that an unchanged candidate optimizer, x1, is a member of

the population for the next generation is

Pr[x1 is selected] = (1− pc)(1− pm)l ind

(

rank (x1) <
|Y |

2

)

. (3.29)

If x2 is an offspring of x1 that undergoes crossover with probability pc, undergoes

mutation of k bits with probability pm, and is subjected to truncation selection, it

becomes a member of the population for the next generation with probability

Pr[x2 is selected] = pcp
k
m(1− pm)l−k ind

(

rank (x2) <
|Y |

2

)

. (3.30)

Thus, the ratio of the probability of selecting x1 to the probability of selecting x2

becomes

Pr[x1 is selected]

Pr[x2 is selected]
=

(1− pc)

pc

(1− pm)k

pk
m

ind
(

rank (x1) < |Y |
2

)

ind
(

rank (x2) < |Y |
2

) , (3.31)

= K
ind

(

rank (x1) < |Y |
2

)

ind
(

rank (x2) < |Y |
2

) , K > 0. (3.32)

The ratio in (3.32) is taken to be∞ if the denominator is zero. This ratio is different

from (3.4).

3.2.4 Evolutionary Strategies

Like genetic algorithms, the general evolutionary strategy [24] operates on a pop-

ulation of cells of the search space of the objective function. Typically, a parent
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population of size µ creates an offspring population of size λ using crossover and mu-

tation processes, with ρ parent cells required to produce one offspring. Crossover does

not occur if ρ = 1. Selection of the population for the next generation of the algorithm

occurs by picking the µ best cells from the λ offspring (known as the (µ/ρ, λ)-ES strat-

egy), or by picking the µ best cells from the total population of µ + λ cells (known

as the (µ/ρ + λ)-ES strategy).

The (1 + 1)-ES strategy [117] is most similar to evolutionary generation systems

theory. Here, one candidate optimizer, x1, produces one mutated offspring candidate

optimizer, x2, and the ratio of the probability of selecting x1 to the probability of

selecting x2 is simply

Pr[x1 is selected]

Pr[x2 is selected]
=

ind (F (x1) > F (x2))

ind (F (x2) ≥ F (x1))
. (3.33)

The ratio in (3.33) is taken to be∞ if the denominator is zero. This ratio equals (3.4)

when the parameter N in (3.4) approaches ∞.
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CHAPTER 4

MARKOV CHAIN ANALYSIS OF SELECTIVE

EVOLUTIONARY GENERATION SYSTEMS

4.1 Markov Chains That Behave Rationally

This section develops a Theory of Rational Behavior [29] for time-homogeneous,

irreducible, ergodic Markov chains. We then discuss the entropy, resilience and op-

portunism of Markov chains that satisfy the axioms of this theory.

4.1.1 Markov Chain Rational Behavior

Let (X,P) be a time-homogeneous, irreducible, ergodic Markov chain, where X =

{x1, x2, . . . , xn} is the set of states of a Markov process, P ∈ R
n×n is the matrix of

transition probabilities for these states, and n <∞ is the number of states. Assume

that the initial probability distribution over the states is known, i.e., we are given an n-

vector p(0) having elements pi(0) = Pr[X (0) = xi] for all xi ∈ X, where X (0) denotes

the state realization at time 0, and we have
n
∑

i=1
pi(0) = 1. Since we have assumed

that the states in X are ergodic and irreducible, they admit a unique stationary

probability distribution [113, 114]. Let π =
[

π1 π2 . . . πn

]

be the row vector of

these stationary probabilities, satisfying the constraints πi > 0 ∀i, and
n
∑

i=1
πi = 1. Let

F : X → R
+ be a positive fitness function. Let N ∈ N be a natural number. We

define rational behavior for this Markov chain as follows.
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Definition 4.1. The time-homogeneous, irreducible, ergodic Markov chain (X,P) is

said to behave rationally with respect to fitness F with level N if

πi

πj

=

(

F (xi)

F (xj)

)N

, 1 ≤ i, j ≤ n. (4.1)

This definition of global rationality is consistent with [29] because time averages

and ensemble averages are equal in an ergodic process. The requirement that πi > 0 ∀i

with
n
∑

i=1
πi = 1 corresponds to the ergodic postulate of [29], and the requirement that

N > 0 corresponds to the selective (i.e., retardation) postulate. Note that we have

recast the requisite scalar function of [29] as a reward, instead of a penalty.

Each stationary probability can also be explicitly characterized to ensure Markov

chain rational behavior, as is indicated by the following theorem.

Theorem 4.1. The time-homogeneous, irreducible, ergodic Markov chain (X,P) be-

haves rationally with respect to fitness F with level N if and only if

πi =
F (xi)

N

n
∑

k=1
F (xk)

N
, 1 ≤ i ≤ n. (4.2)

Proof. See Appendix A.

Here, we have a more general, probabilistic version of the optimization of an

objective function. A Markov chain that behaves rationally will select the state of

maximum fitness with the highest stationary probability, and, in the limit as N

approaches ∞, this probability is 1. The problem and solution then revert to one of

standard optimization.

Remarkably, rational behavior in Markov chains is the result of a subsidiary opti-

mization.

Theorem 4.2. The stationary distribution π of the time-homogeneous, irreducible,

ergodic Markov chain (X,P) that behaves rationally with respect to fitness F with
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level N solves the optimization problem

min
π1,...,πn

Φ(π) = −
n
∑

i=1

F (xi)
N ln(πi), (4.3)

subject to the constraints
n
∑

i=1

πi = 1, (4.4)

πi > 0, ∀i. (4.5)

Proof. See Appendix A.

Note that in (4.1), rational behavior is invariant under positive scaling of fitness.

Hence, there is no loss of generality in assuming that the fitness function is normalized.

Accordingly, let ϕ =
[

ϕ1 ϕ2 . . . ϕn

]

be the distribution of the N th power of fitness,

where

ϕi =
F (xi)

N

n
∑

k=1
F (xk)

N
, 1 ≤ i ≤ n. (4.6)

Definition 4.2. A vector v ∈ R
n is a positive mass function of order n if it satisfies

vi > 0 ∀i, and
n
∑

k=1
vk = 1. Let Dn be the set of positive mass functions of order n.

The vector ϕ ∈ R
n is a positive mass function. Let

U(π) =
Φ(π)

n
∑

k=1
F (xk)

N
. (4.7)

Then, the optimization problem (4.3) can be normalized as

min
π1,...,πn

U(π) = −
n
∑

i=1

ϕi ln(πi), (4.8)

subject to the constraints (4.4) and (4.5). Furthermore, Theorem 4.2 states that

at the optimum, the stationary distribution agrees with the fitness distribution, i.e.,

π = ϕ.
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4.1.2 Entropy of Markov Chains That Behave Rationally

Definition 4.3. Entropy [118] is the function

H : Dn → R : ϕ 7→ H(ϕ) = −
n
∑

i=1

ϕi ln(ϕi). (4.9)

Using the notion of entropy, we can interpret (4.8) as follows. First, we recognize

the term − ln(πi) as the information content of state xi [118]. Hence, the right hand

side of (4.8) represents the “fitness-expectation of information.” Moreover, we have

the following:

Corollary 4.1. The time-homogeneous, irreducible, ergodic Markov chain (X,P) be-

haves rationally with respect to fitness F with level N if and only if its stationary

probability distribution minimizes the fitness-expectation of information. At the opti-

mum, this fitness-expectation of information is the entropy of the fitness distribution,

i.e.,

U∗ = H(ϕ) = −
n
∑

i=1

ϕi ln(ϕi). (4.10)

A basic property of entropy that is alluded to in [119] and which will be utilized

in the proof of Theorem 4.12 follows.

Theorem 4.3. Let ϕ ∈ Dn be arbitrary. Then,

min
π∈Dn

−
n
∑

i=1

ϕi ln(πi), (4.11)

has a minimum value of H(ϕ) that is achieved at π = ϕ.

Equivalently, ∀ϕ ∈ Dn, ∀π ∈ Dn,

−
n
∑

i=1

ϕi ln(πi) ≥ −
n
∑

i=1

ϕi ln(ϕi), (4.12)

with the equality holding if and only if π = ϕ.
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Equivalently, ∀ϕ ∈ Dn, π ∈ Dn,

−
n
∑

i=1

ϕi ln

(

πi

ϕi

)

≥ 0, (4.13)

with the equality holding if and only if π = ϕ.

Proof. See Appendix A.

For Markov chains that behave rationally, and therefore possess fitness fractions

that are distributed over the set of states as in (4.6), the entropy quantifies how

egalitarian or elitist the states are. That is, the entropy is highest when all states

have equal fitness; conversely, the entropy is lowest when there is only one state with

a fitness fraction of unity and all other fitness fractions are zero. Equation (4.9) arises

in other well-known fields, and similar interpretations for the distributed quantities

and the entropy exist — see Table 4.1.

In Information Theory [118], the distributed quantity is the probability that a par-

ticular message is chosen given the sequence of symbols received, and this probability

is distributed over the set of all messages. Entropy in this theory quantifies certainty

and uncertainty. Equation (4.8) is also derived and discussed in [119] within the con-

text of Information Theory. In Classical Thermodynamics [120], the mole fractions

of a physical/chemical substance are distributed over the set of all physical/chemical

substances in the system. Entropy in this theory quantifies separation and mixing. In

Statistical Mechanics [121], the distributed quantity is the probability that a system

is in a particular microstate given its macrostate, and this probability is distributed

over the set of all microstates in the system. Entropy in this theory quantifies order

and disorder.
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Table 4.1: Entropy in the Sciences

Theory of Rational

Behavior

Information Theory

[118]

Classical

Thermodynamics [120]

Statistical Mechanics

[121]

Distributed Quantity Fitness fraction of

Markov states

Probability that a

particular message is

chosen given the

sequence of symbols

received

Mole fraction of a

physical/chemical

substance

Probability that a

system is in a

particular microstate

given its macrostate

Space That the

Quantity is

Distributed Over

Set of states of a

Markov process

Set of messages Set of physical/

chemical substances in

the system

Set of microstates

Entropy Quantified

Motion

Elitism vs.

egalitarianism

Certainty vs.

uncertaintya

Separation vs. mixing Order vs. disorder

aEquation (4.8) is also derived and discussed in [119] within the context of Information Theory.
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Section 4.2.2 considers a discrete-time dynamic system described by

p(t + 1) = p(t)P, (4.14)

where the underlying dynamics are given by a time-homogeneous, irreducible, ergodic

Markov chain (X,P) that behaves rationally with respect to fitness F with level N ,

and p(t) is an n-dimensional row vector at time t. It is shown that the discrete-

time dynamic system has an invariant manifold, which is the set of vectors p with

components pi(t) > 0, 1 ≤ i ≤ n, and
n
∑

i=1
pi(t) = 1. It is also shown that the manifold

has an equilibrium for these dynamics, π, with components πi satisfying (4.2), and

that the function

V (p(t)) = −
n
∑

i=1

ϕi ln

(

pi(t)

ϕi

)

, (4.15)

where ϕi satisfies (4.6), is a Lyapunov function that establishes global asymptotic

stability of the dynamic system (4.14) with respect to the manifold. Equation (4.15)

can be defined for any Markov chain that behaves rationally, since it is the non-

stationary and non-biased version of (4.7). However, (4.15) has deeper meanings: a

relationship to stability analysis for the technique in this dissertation, and as we shall

see, a relationship to search theory too.

Reference [122] provides a relationship between search theory, (4.15) and a similar

expression

W (p(t)) = −
n
∑

i=1

pi(t) ln

(

pi(t)

ϕi

)

. (4.16)

Initial values V (p(0)) and W (p(0)) are measures of prior information for a search. It

is stated that V (p(t))− V (p(0)) is ‘the measure of the amount of prior information

utilized’ by the search up to time t, and W (p(t)) −W (p(0)) is ‘the measure of the

savings in search effort thereby achieved. The optimal (search) policy is then the

one that trades off initial information for reduced search effort, as quickly as possible’

[122].
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Entropy maximization is important for search according to [123] as follows.

‘In making inferences on the basis of partial information, the maximum

entropy probability distribution subject to whatever is known is the only

unbiased assignment we can make; to use any other would amount to ar-

bitrary assumption of information which by hypothesis we do not have.

Mathematically, the maximum-entropy distribution has the important

property that no possibility is ignored; it assigns a positive weight to

every situation that is not absolutely excluded by the given information.

This is quite similar in effect to an ergodic property.’

The relationship between entropy maximization and optimal search is clarified in

[122]. The optimal search policy for cells with exponential “sizes” ‘appears very much

like an irreversible process in thermodynamics, in which an initially non-equilibrium

state relaxes in the the equilibrium state of maximum entropy. But now it is only

our state of knowledge that relaxes to the “equilibrium” condition of maximum un-

certainty’ [122].

Applying these results from [122] and [123], an exponential normalized fitness

function relates rational behavior, entropy and optimal search through the following

theorem.

Theorem 4.4. Let y : X → R be an unknown function for which an expected value,

E [y(x)], is a known number Y . The normalized fitness

ϕi = αe−βy(xi), 1 ≤ i ≤ n, (4.17)

and the stationary distribution π of the time-homogeneous, irreducible, ergodic Markov

chain (X,P) that behaves rationally with respect to fitness F with level N solves the
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optimization problem

max
ϕ∈Dn

min
π∈Dn

U(ϕ,π) = −
n
∑

i=1

ϕi ln(πi), (4.18)

subject to the constraint

E [y(x)] = Y. (4.19)

Proof. See Appendix A.

Hence, a scheme with underlying Markov chain dynamics that behave rationally

also maximizes the entropy of the fitness distribution when the fitness function is

exponential. The implication is that a fitness function like

F (xi) = e−((z(xi)−Z)2) (4.20)

together with a scheme that makes use of rational behavior guarantees good behaviors

efficiently, in accordance with the problem definition of Section 1.4.

Exponential fitness functions arise in nature if one considers fecundity as the

measure of fitness. Other examples include the beak depth of the Galapagos finches

[124] and instances when directional selection [105] is prevalent.

4.1.3 Resilience and Opportunism of Markov Chains That

Behave Rationally

We can now formally define resilience and opportunism, first described through

Figure 1.1, as the sensitivity of the stationary distribution to changes in fitness.

Definition 4.4. For any time-homogeneous, irreducible, ergodic Markov chain (X,P)

with a positive fitness function for all the states in X, the extrinsic resilience of state

40



xi to changes in the fitness of state xj, j 6= i, is defined as

ρij =
∂πi

∂F (xj)
, (4.21)

and the intrinsic resilience of state xi to changes in its own fitness is taken to be

ρii =
∂πi

∂F (xi)
. (4.22)

Since the stationary distribution π has the closed form expression (4.2) for the

time-homogeneous, irreducible, ergodic Markov chain (X,P) that behaves rationally

with respect to fitness F with level N , the extrinsic and intrinsic resiliencies are

ρij =
∂πi

∂F (xj)
=
−Nπiπj

F (xj)
, ∀j 6= i, (4.23)

ρii =
∂πi

∂F (xi)
=

Nπi (1− πi)

F (xi)
. (4.24)

We say that the Markov chain (X,P) is resilient and opportunistic if ρij 6= 0 for all i

and j.

The level of selectivity has the following asymptotic effect on resilience and oppor-

tunism.

Theorem 4.5. For the time-homogeneous, irreducible, ergodic Markov chain (X,P)

that behaves rationally with respect to fitness F with level N ,

ρij

∣

∣

∣

∣N=0
j 6=i

= ρii

∣

∣

∣

∣

N=0
= 0, (4.25)

and

lim
N→∞

j 6=i

ρij = lim
N→∞

ρii = 0. (4.26)

Proof. See Appendix A.

41



As a result of Theorem 4.5, we have quantification that standard optimization

(N →∞) is non-resilient. Moreover, recall that if we assume a k-generation fecundity

interpretation of fitness as in Section 3.1, then N → ∞ also represents an infinite

number of selections made over k generations. There is much biological evidence to

confirm that prolonged selective breeding yields non-resilient strains [125–129].

Resilience and opportunism is a direct outcome of Markov chain rational behavior,

as stated below.

Theorem 4.6. The time-homogeneous, irreducible, ergodic Markov chain (X,P) is

resilient and opportunistic if the chain behaves rationally.

Proof. See Appendix A.

Resilience and opportunism do not always imply Markov chain rational behavior

(see Section 4.3). But we can state the following instead.

Theorem 4.7. Ergodicity is a necessary condition for the time-homogeneous, irre-

ducible Markov chain (X,P) to be resilient and opportunistic.

Proof. See Appendix A.

Furthermore, there is a fundamental trade-off between extrinsic and intrinsic re-

silience that is imposed by the constraint
n
∑

i=1
πi = 1. Taking the partial derivative of

this constraint with respect to the fitness of state xi, we obtain

∂πi

∂F (xi)
+

n
∑

j=1
j 6=i

∂πj

∂F (xi)
= 0. (4.27)

Note that, from (4.23) and (4.24), the extrinsic resiliencies are always negative,

whereas the intrinsic resiliencies are positive. Hence, (4.27) implies that any change

in fitness that improves a state’s intrinsic resilience is at the expense of the extrinsic

resilience of all other states. Similarly, any change in fitness that improves a state’s
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extrinsic resilience is at the expense of the intrinsic resilience of another state, and

the extrinsic resilience of all other states.

4.1.4 The Importance of Resilience and Opportunism

The results of Sections 4.1.2 and 4.1.3 facilitate a qualitative discussion of the

domains where resilience and opportunism are important. Such a discussion is the

focus of this subsection, and the discussion is partly inspired by the premise of [119]

and the interpretation of (4.7) therein.

When searching for a desirable behavior, a fit species, or an objective function

optimizer, the search is dependent on two features: the desirability, fitness or opti-

mality of the elements of the search space, and the definition of desirability, fitness,

or objective function to be optimized. Accordingly, there are two types of uncertain-

ties associated with the search. The first is an uncertainty in belief about element

suitability, which is a vagueness that is due to a lack of information about the search

space. This uncertainty is embodied in a prior probability distribution on the space

of actions, organisms, or candidate optimizers, and is reduced when the distribution

changes to a posterior probability distribution after an informative search. Informa-

tion Theory [118] deals with this kind of uncertainty.

The second type of uncertainty is an uncertainty in environment, which stems from

uncertain definitions of desirability, fitness, or objective functions. This uncertainty

is caused by the possibility that the possessed information about the search space is

incorrect, since changes in definition could lead to changes in element suitability. Ref-

erence [119] augmented Information Theory to include this kind of uncertainty. Note

that sampling the search space and finding element suitability to be unchanged with

each sample does not always resolve uncertainty in the environment. This is because

element suitability may change during the interval between samples (reminiscent of

the need to sample according to Shannon’s sampling theorem [130]).
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Both uncertainty in belief and uncertainty in environment can exist simultane-

ously during search. The size of the search space can also affect the choice of search

technique. These three features are useful in determining domains where resilience

and opportunism are important and where they are not required (see Figure 4.1).

Figure 4.1: The Markov Cube depicts how common approaches to optimization com-
pare with respect to belief and environment uncertainties, and search
space size.

As the following discussion shows, resilience and opportunism are not required

when the environment is certain. This corresponds to the left plane of the cube in

Figure 4.1, called the Shannon plane. The right plane of the cube, called the Kerridge

plane, is where resilience and opportunism are desirable, and where (4.7) arises. Re-

silience and opportunism are most important in the worst case scenario, when belief
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uncertainty, environment uncertainty, and search space size are all high. The results

of Section 4.1.3 indicate that Markov chains that behave rationally start at the Shan-

non plane when level N = 0, move towards the Kerridge plane for intermediate values

of level N , and then traverse back to the Shannon plane as level N approaches ∞.

Consider a domain where the search space has few elements, the environment is

certain (i.e., there is no possibility of changes in what is considered desirable, fit or

optimal), and there is no prior information about the desirability, fitness or optimality

of the elements. An exhaustive search of the small space suffices to eliminate high

uncertainties in belief. Resilience is not required for this domain.

An example of a domain where both environment and belief uncertainties are

low is the field of deterministic optimal control theory [131–133], which is used to

find a control strategy for a dynamic system that maximizes a performance measure.

Typically, this performance measure is specified and external disturbances are ignored,

resulting in low environment uncertainty. Although the space of admissible control

inputs may be large, prior information about the system (and therefore the feasible

control inputs) exists because the dynamics are known and the outputs are presumed

observable. Hence, there is low belief uncertainty. Resilience is not important in this

setting because of the low uncertainties.

The more general stochastic optimal control problem [134, 135] includes external

disturbances and partial observability. Partial observability of the system increases

the uncertainty in belief about the system states and the appropriate control inputs.

The performance measure to be maximized is specified explicitly (as an expectation),

and statistics about the disturbances are typically assumed. Thus, environment uncer-

tainty is still relatively low for this domain. Dynamic programming is the technique

that is often used to solve stochastic optimal control problems. Resilience is not re-

quired because dynamic programming yields the optimal control inputs for all possible

states of the system. Consequently, dynamic programming suffers from the curse of
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dimensionality, and is limited to smaller search space sizes.

The multi-armed bandit problem [136] (with application to reinforcement learning

[16]) is a similar instance of a domain with moderate belief uncertainty and low

environment uncertainty. Probabilistic payoffs result in medium uncertainty in belief,

while the fixed payoff distributions result in low uncertainty in environment. The

optimal Gittins index policy can be obtained through dynamic programming, and

resilience is therefore not required.

The remaining techniques of Section 3.2 can also be placed on the cube in Figure

4.1. These methods are appropriate for large search spaces and high belief uncertainty.

Simulated annealing is located on the Shannon plane because the designed behavior is

not resilient once the parameter T has been reduced. Genetic algorithms, on the other

hand, can be resilient; this is suggested by comparing the canonical genetic algorithm

with fitness proportional selection to a Markov chain that behaves rationally with level

N = 1. The (1+1) evolutionary strategy is located on the Shannon plane because it

can be compared to a Markov chain that behaves rationally with level N →∞.

Section 4.2 describes how a stochastic SEGS process is a Markov chain that be-

haves rationally with level N between 0 and ∞. The proposed scheme in this disser-

tation occupies the hatched area of the cube in Figure 4.1 because a SEGS is also

suited for high belief uncertainty and moderate to large search spaces (contingent on

the number of parallel implementations). It follows that a SEGS generalizes genetic

algorithms and the (1+1) evolutionary strategy as expected.

Since Markov decision processes and Markov chains can be used to analyze the

techniques depicted in Figure 4.1, the cube in the figure is called a Markov Cube.
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4.2 Selective Evolutionary Generation Systems as

Markov Chains That Behave Rationally

This section applies the Theory of Rational Behavior for time-homogeneous, irre-

ducible, ergodic Markov chains (as developed in Section 4.1) to a SEGS as formulated

in Section 3.1. We begin with some preliminaries.

4.2.1 Analysis of Selective Evolutionary Generation Systems

Definition 4.5. Let Γ = (X,R, P,G, F ) be a selective evolutionary generation sys-

tem. Let xi, xj ∈ X be any two cells, and rk ∈ R be a resource. The descendancy

tensor, δ, has elements

δijk =



















1 if xj = G(xi, rk), 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ m,

0 otherwise.

(4.28)

Hence, the descendancy tensor indicates whether it is possible to produce cell xj

in one step from cell xi, using resource rk. We can use this tensor to create a matrix

that represents the conditional probability of generating xj given that the progenitor

is xi, by utilizing the probability of selecting each available resource and summing

over all m resources as follows.

Definition 4.6. For the SEGS Γ = (X,R, P,G, F ), the matrix of generation proba-

bilities, γ, also called the unselective matrix of transition probabilities, has elements

γij = Pr[offspring is xj | progenitor is xi], (4.29)

=
m
∑

k=1

δijkpk, 1 ≤ i ≤ n, 1 ≤ j ≤ n. (4.30)

This matrix is a stochastic matrix, as indicated by the following lemma.
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Lemma 4.1. For the SEGS Γ = (X,R, P,G, F ) with matrix of generation probabili-

ties γ,
n
∑

j=1

γij = 1, 1 ≤ i ≤ n. (4.31)

Proof. See Appendix A.

Recall that a SEGS follows the stochastic Markov process described by (3.3).

Therefore, we can find a matrix of transition probabilities to describe the cell-to-cell

transitions that occur as a result of the selection dynamics. For the SEGS Γ =

(X,R, P,G, F ), the matrix of transition probabilities, P, has elements

Pij = Pr[X (t + 1) = xj | X (t) = xi], (4.32)

= Pr[Select(xi, xj, N) = xj | X (t) = xi]×

Pr[offspring is xj | progenitor is xi] (4.33)

=



































1

1+

(

F (xi)

F (xj)

)N γij, ∀j 6= i,

γii +
n
∑

j=1
j 6=i

1

1+

(

F (xj)

F (xi)

)N γij, if j = i.

(4.34)

Note that the matrix of transition probabilities in (4.34) is also a stochastic matrix.

Theorem 4.8. For the SEGS Γ = (X,R, P,G, F ) with matrix of transition probabil-

ities P,
n
∑

j=1

Pij = 1, 1 ≤ i ≤ n. (4.35)

Proof. See Appendix A.

In addition to irreducibility, if we assume that the selection dynamics of the SEGS

is ergodic, then a unique stationary probability distribution over the set of cells exists,

and must satisfy the following.
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Theorem 4.9. For the ergodic SEGS Γ = (X,R, P,G, F ), let π =
[

π1 π2 . . . πn

]

be the row vector of stationary probabilities, satisfying
n
∑

i=1
πi = 1. Assume that there

is a unique index, I, such that F (xi) is maximized for i = I. Then,

lim
N→∞

πi = 0, 1 ≤ i ≤ n, i 6= I, (4.36)

lim
N→∞

πI = 1. (4.37)

Proof. See Appendix A.

It is easy to extend this theorem and its proof to the case where I is not unique

and show that the cells with equal maximal fitness are equiprobable. For both ver-

sions of the theorem, there exist stationary probabilities equal to zero in the limit as

N approaches ∞ because the stochastic selection process becomes elitist instead of

ergodic.

We can also examine the SEGS response to changes in selectivity and cell fitness.

First, the probability of increasing fitness with every time step, conditioned upon

knowledge of the current cell, is

Pr [F (X (t + 1)) > F (X (t)) | X (t) = xi]

=
n
∑

j=1
j 6=i

ind (F (xj) > F (xi)) Pij. (4.38)

This conditional probability increases as N increases. However, the unconditional

probability of increasing fitness with every time step,

Pr [F (X (t + 1)) > F (X (t))]

=
n
∑

i=1

n
∑

j=1
j 6=i

ind (F (xj) > F (xi)) Pijπi, (4.39)
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approaches zero in the limit as N approaches ∞. That is, the unconditional proba-

bility decreases as N increases. This (perhaps counter-intuitive) result is due to the

elitist nature of the resultant selection process — the cell with maximal fitness has a

stationary probability of 1, and consequently, the probability of improving fitness is

correspondingly 0.

Next, the effect of changes in cell fitness on elements of the matrix of transition

probabilities, P, is given by the following four equations:

∀j 6= i,
∂Pij

∂F (xj)
=

N

F (xj)







1

1 +
(

F (xj)

F (xi)

)N





Pij, (4.40)

∂Pii

∂F (xj)
=
−N

F (xj)

n
∑

j=1
j 6=i

1

1 +
(

F (xj)

F (xi)

)N Pij, (4.41)

∀j 6= i,
∂Pij

∂F (xi)
=
−N

F (xi)







1

1 +
(

F (xj)

F (xi)

)N





Pij, (4.42)

∂Pii

∂F (xi)
=

N

F (xi)

n
∑

j=1
j 6=i

1

1 +
(

F (xj)

F (xi)

)N Pij. (4.43)

In the first equation above, we see that an increase in the fitness of cell xj increases

the probability of transitioning to that cell from current cell xi by an amount that

is proportional to the level of selectivity and inversely proportional to the fitness

value. The second equation indicates a corresponding decrease in the probability of

transitioning back to the current cell under the same altered fitness landscape. Unlike

gradient ascent optimization where the transition to another cell would be directly

proportional to the fitness value, what we have here is reminiscent of the retardation

property in [29]; the stochastic process “slows down” transitions in more favorable

fitness conditions to take advantage of the external environment. Similar effects on

the transition probabilities are suggested by the latter two equations for changes in

current cell fitness.
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4.2.2 Dynamic Properties of Selective Evolutionary Genera-

tion Systems

We can now state some dynamic properties of selective evolutionary generation

systems, under certain technical conditions.

Theorem 4.10. For the ergodic SEGS Γ = (X,R, P,G, F ), assume that the matrix

of generation probabilities, γ, is symmetric. Then the Markov chain representing

the stochastic dynamics of the ergodic SEGS behaves rationally with fitness F and

level N . That is, the row vector π =
[

π1 π2 . . . πn

]

, where πi satisfies (4.2), is a

left eigenvector of P, the matrix of transition probabilities for Γ, with corresponding

eigenvalue 1 (i.e., πP = π). Hence, π is the vector of stationary probabilities for the

SEGS.

Proof. See Appendix A.

As a result of Theorem 4.6, the stochastic dynamics of the ergodic SEGS with sym-

metric matrix of generation probabilities, γ, are resilient and opportunistic. Hence, a

SEGS is a computationally inexpensive on-line technique to achieve these character-

istics because only local decisions between two candidate optimizers are made at any

time. The need to evaluate the fitness of all elements in the domain of the objective

function, or even in a sub-population of candidate optimizers (as in genetic algorithms

or evolutionary strategies), is avoided.

The symmetry condition on the matrix of generation probabilities, γ, implies that

there exists equiprobable forward and reverse transitions between any pair of cells

prior to the selection process. More specifically, symmetry of γ is a requirement that

mutations be reversible. This reversibility requirement is satisfied in biology, and

such mutations are called true back mutations [137, 138].

Theorem 4.11. For the ergodic SEGS Γ = (X,R, P,G, F ), assume that the matrix

of generation probabilities, γ, is symmetric. Then the Markov chain representing the
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stochastic dynamics of the ergodic SEGS is time-reversible, i.e.,

πiPij = πjPji, ∀i, j. (4.44)

Proof. See Appendix A.

As a consequence, the Markov chain representing the stochastic dynamics of the

SEGS and its time reversed form are statistically the same.

Theorem 4.12. For the ergodic SEGS Γ = (X,R, P,G, F ), assume that the matrix of

generation probabilities, γ, is symmetric. Consider the discrete-time dynamic system

described by

p(t + 1) = p(t)P, (4.45)

where P is the matrix of transition probabilities for Γ, and p(t) is an n-dimensional

row vector at time t.

(1) This discrete-time dynamic system has an invariant manifold. The manifold is

the set of vectors p with components pi(t) > 0, 1 ≤ i ≤ n, and
n
∑

i=1
pi(t) = 1.

(2) The manifold has an equilibrium for these dynamics, π, with components πi sat-

isfying (4.2).

(3) The function

V (p(t)) = −
n
∑

i=1

ϕi ln

(

pi(t)

ϕi

)

, (4.46)

where ϕi satisfies (4.6), is a Lyapunov function that establishes global asymptotic

stability of the dynamic system (4.45) with respect to the manifold.

Proof. See Appendix A.

Another important quantity of an ergodic SEGS is the expected amount of time

to reach the fittest cell, given a starting cell. We will make use of the following related

definitions, which are common to the theory of Markov chains [114].
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Definition 4.7. The return time Tj to cell xj is

Tj = inf{t ≥ 1 | X (t) = xj}, (4.47)

where Tj = ∞ if X (t) 6= xj for all t ≥ 1.

The hitting time of xj is taken to be

Sj =



















Tj, if X (0) 6= xj,

0, if X (0) = xj.

(4.48)

The mean hitting time to xj given an initial cell xi is defined as

σij = E [Sj | X (0) = xi] =























n
∑

k=1
Pik (σkj + 1) , ∀i 6= j,

0, i = j,

(4.49)

and we take σj =
[

σ1j σ2j . . . σnj

]T

.

If we let 1 =
[

1 1 . . . 1

]T

and Dj be a diagonal matrix with ones on the

diagonal except one zero at position (j, j), then

σj = Dj(Pσj + 1). (4.50)

Alternatively,

σj = (I−DjP)−1Dj1, (4.51)

where I is the n× n identity matrix.

Theorem 4.13. For the ergodic SEGS Γ = (X,R, P,G, F ), assume that there exists

a unique index I such that F (xi) is maximized for i = I. Then for all i 6= I,

1. lim
N→∞

σiI exists, and
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2. σiI is a strictly decreasing function of N .

Proof. See Appendix A.

Hence, a trade-off exists between resilient and opportunistic behavior of the SEGS,

and the expected hitting time of the optimizer, with the trade-off controlled by the

level of selectivity, N . That is, increasing N reduces the mean hitting time to the

fittest cell but also decreases resilience and opportunism.

4.3 Illustrative Example of a Selective Evolution-

ary Generation System

We illustrate the theory in this dissertation with an example in two parts.

4.3.1 Non-symmetric Matrix of Generation Probabilities

Consider the evolutionary generation system (X,R, P,G), where

• X = {x1, x2},

• R = {r1, r2},

• P (r1) = p, P (r2) = 1− p, p 6= 0,

• G(x1, r1) = x2, G(x1, r2) = x1, G(x2, r1) = x2, and G(x2, r2) = x1 (see Figure

4.2).

r1

r2

r2 r1x1 x2

Figure 4.2: The directed graph of the example in Section 4.3.1.
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The matrix of generation probabilities for this evolutionary generation system is

γ =









1− γ12 γ12

γ21 1− γ21









=









1− p p

1− p p









. (4.52)

Let F (x1) = f1 and F (x2) = f2. Let N be a finite level of selectivity. Utilizing

(4.34), the matrix of transition probabilities for the selective evolutionary generation

system is

P =
1

fN
1 + fN

2









fN
1 + (1− γ12)f

N
2 γ12f

N
2

γ21f
N
1 (1− γ21)f

N
1 + fN

2









. (4.53)

This SEGS is both aperiodic and positive recurrent, and hence, ergodic.

The stationary distribution of the SEGS can be computed to be

π =
1

γ21fN
1 + γ12fN

2

[

γ21f
N
1 γ12f

N
2

]

. (4.54)

Note that the ratio of the stationary probabilities of the two cells is

π1

π2

=
γ21f

N
1

γ12fN
2

=
(1− p)fN

1

pfN
2

. (4.55)

Since this ratio is not equal to
(

f1

f2

)N

, (4.56)

the SEGS does not behave rationally except for p = 0.5. Moreover, note that for

p = 0.5, the matrix of generation probabilities (4.52) is symmetric. Hence, this

example illustrates that asymmetry of the matrix of generation probabilities may

lead to behavior that is not rational. As a result, it is possible that, for small N , the

most fit cell is not the most probable cell at steady state. For instance, take p = 0.1,
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N = 1, f1 = 1 and f2 = 2. We obtain

π1 =
0.9

0.9 + 0.2
≈ 0.818, (4.57)

and

π2 =
0.2

0.9 + 0.2
≈ 0.182. (4.58)

This is why rationality is desired for behavior design and optimization, to ensure that

fitter cells are more probable at steady state.

4.3.2 Symmetric Matrix of Generation Probabilities

Consider the evolutionary generation system (X,R, P,G), where

• X = {x1, x2},

• R = {r1, r2},

• P (r1) = p, P (r2) = 1− p, p 6= 0,

• G(x1, r1) = x2, G(x1, r2) = x1, G(x2, r1) = x1, and G(x2, r2) = x2 (see Figure

4.3).

r1

r1

r2 r2x1 x2

Figure 4.3: The directed graph of the example in Section 4.3.2.

The matrix of generation probabilities for this evolutionary generation system is

γ =









1− γ12 γ12

γ21 1− γ21









=









1− p p

p 1− p









. (4.59)
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Let F (x1) = f1 and F (x2) = f2. Let N be a finite level of selectivity. Utilizing

(4.34), the matrix of transition probabilities for the selective evolutionary generation

system is

P =
1

fN
1 + fN

2









fN
1 + (1− γ12)f

N
2 γ12f

N
2

γ21f
N
1 (1− γ21)f

N
1 + fN

2









. (4.60)

This SEGS is both aperiodic and positive recurrent, and hence, ergodic.

The stationary distribution of the SEGS can be computed to be

π =
1

γ21fN
1 + γ12fN

2

[

γ21f
N
1 γ12f

N
2

]

. (4.61)

The example has been constructed such that γ12 = γ21 = p, and so this ergodic SEGS

is rational.

Taking partial derivatives, the extrinsic and intrinsic resilience equations of the

two cells of the SEGS are

ρ11 =
Nγ21f

N−1
1

γ21fN
1 + γ12fN

2

(

1−
γ21f

N
1

γ21fN
1 + γ12fN

2

)

, (4.62)

=
Nπ1 (1− π1)

f1

6= 0, (4.63)

ρ12 =
−γ21f

N
1

(γ21fN
1 + γ12fN

2 )
2Nγ12f

N−1
2 , (4.64)

=
−Nπ1π2

f2

6= 0, (4.65)

ρ21 =
−γ12f

N
2

(γ21fN
1 + γ12fN

2 )
2Nγ21f

N−1
1 , (4.66)

=
−Nπ2π1

f1

6= 0, (4.67)

ρ22 =
Nγ12f

N−1
2

γ21fN
1 + γ12fN

2

(

1−
γ12f

N
2

γ21fN
1 + γ12fN

2

)

, (4.68)

=
Nπ2 (1− π2)

f2

6= 0. (4.69)
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These equations match the theoretical results stated previously. If γ were not sym-

metric, this SEGS still happens to be resilient.

If f1 > f2, the mean hitting time to x1 is

σ1 =









0

fN
1 +fN

2

γ21fN
1









, (4.70)

and if f2 > f1, the mean hitting time to x2 is

σ2 =









fN
1 +fN

2

γ12fN
2

0









. (4.71)

In the limit as N approaches ∞, we have

lim
N→∞

σ1 =









0

1
γ21









, (4.72)

and

lim
N→∞

σ2 =









1
γ12

0









, (4.73)

as expected from the proof of Theorem 4.13.

4.4 Summary

Initiating the process of selective evolution requires answering the three basic

questions:

1. What are the cells and resources?

2. How are offspring cells generated?

3. How is cell fitness measured?
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Once these questions are answered, the SEGS algorithm proceeds according to (3.3)

and produces a stationary distribution of cells that is rational, resilient and oppor-

tunistic. Model-based knowledge is not utilized by the algorithm.

The SEGS algorithm has many biological parallels. The answers to the above

questions are also well known: during asexual reproduction, an additional cell is

generated through a division of genetic material in a process called mitosis [105].

Each cell’s genetic identity is parameterized by a sequence of symbols from a four

letter alphabet, its genotype, while the physical realization of a genotype is known as

its phenotype. Although reproduction occurs through operations on the genotype, it

is the functionality of the phenotype that determines cell fitness [105]. Hence, it is

necessary to account for the genotype-phenotype mapping when evaluating cell fitness

in a SEGS.

4.5 Relationship Between Selective Evolutionary

Generation Systems and Markov Chain Monte

Carlo Algorithms

The SEGS algorithm is an example of a Markov Chain Monte Carlo (MCMC)

algorithm. MCMC algorithms are useful for simulating large random fields through

sampling, and are frequently employed in statistical mechanics applications [114].

MCMC algorithms utilize an irreducible, aperiodic, time-homogeneous Markov chain

such that the stationary distribution, π, is the target distribution. Since convergence

to the target distribution is easier to check for reversible Markov chains, these Markov

chains are the most frequent case of MCMC algorithms [114].

Hence, the design of an MCMC algorithm involves finding an ergodic transition

matrix P that satisfies

πiPij = πjPji, ∀i, j. (4.74)
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According to [114], a typical choice of Pij has the form

Pij = Qijαij, ∀j 6= i. (4.75)

Here, Q is a probability transition matrix (called the candidate-generating matrix )

with elements Qij representing the probability of “tentatively” choosing a transition

from i to j, and α is a probability transition matrix with elements αij representing

the probability of accepting that transition. A generic formulation for the acceptance

probabilities is specified by the Hastings algorithm, which sets

αij =
sij

1 + πiQij

πjQji

, (4.76)

where sij are the elements of a symmetric matrix S. Special cases of the Hastings

algorithm include the Metropolis algorithm, which is used in simulated annealing,

and Barker’s algorithm.

Barker’s sampler [139], from which Barker’s algorithm takes its name, was pro-

posed to compute radial distribution functions for plasmas over a wide range of

temperatures and densities so that macroscopic thermodynamic variables could be

calculated. The goal is to produce a Markov chain that, at steady state, results in

a frequency distribution whereby a particle configuration state i recurs with a fre-

quency proportional to the Boltzmann factor exp(−Vi/kT ) for that state, where Vi

is the potential energy of state i, k is the Boltzmann constant, and T is temperature.

The acceptance probability for Barker’s sampler is taken to be

αij(T ) =
1

1 + e−(Vi−Vj)/kT
. (4.77)

The acceptance probability for the more general Barker’s algorithm sets sij = 1 in
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(4.76), so that

αij =
1

1 +
(

πi

πj

) (

Qij

Qji

) . (4.78)

In the case of purely random Q, this becomes

αij =
1

1 +
(

πi

πj

) . (4.79)

A SEGS has Q = γ. For rational behavior, we impose a symmetry condition so

that Qij = Qji. Setting sij = 1 in (4.76), the definition of rational behavior implies

that the acceptance probability utilized by the SEGS algorithm is

αij =
1

1 +
(

πi

πj

) . (4.80)

Thus, the SEGS algorithm and Barker’s algorithm are the same.

However, this dissertation arrived at Barker’s algorithm in a non-traditional man-

ner, i.e., we did not assume time-reversibility and begin at Hasting’s algorithm. In-

stead, modeling Nature, we started with a self-reproducing process and selected ac-

cording to local rationality. The aim was to achieve global rational behavior, thereby

resulting in resilience and opportunism. A required assumption was equiprobable

forward and reverse transitions prior to selection, a fact borne out in Nature. This

assumption resulted in the SEGS algorithm being time-reversible. Furthermore, effi-

cient searching suggested exponential fitness functions, which are also documented in

Nature. The combination of an exponential fitness function and a SEGS algorithm

is the Barker sampler.

In light of the connection between rational behavior and statistical mechanics

through entropy (see Table 4.1), it is perhaps unsurprising that selective evolutionary

generation results in Barker’s version of an MCMC method.
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4.6 Multi-Selective Generation Systems as Markov

Chains That Behave Rationally

Unfortunately, a SEGS may require a large number of steps to generate a can-

didate whose fitness exceeds a threshold. Therefore, one goal of this section is to

extend the work of this chapter so that resilient and opportunistic behavior design

is inexpensively attained in fewer generations, on average. The increased speed is

particularly important for the finite-horizon problem, when a fit candidate must be

found within a pre-specified number of algorithm iterations.

Another goal of this section is to analyze the resilience of the behavior designed

by the Canonical Genetic Algorithm with Fitness Proportional Selection (CGAFPS),

through its use of rational behavior. Recall that the primary benefit of employing

rational behavior is its capacity for optimal search, where optimality is defined as

either a minimization of prior information or a maximization of search effort savings.

A secondary benefit is that rational behavior, when applied to Markov chains (see

Section 4.1.3), is a sufficient condition for resilience and opportunism. To facilitate

the analysis, we develop the requisite extension of a SEGS so that the technique in

this section is very similar to the CGAFPS. We show that the conditions for the

extended technique to achieve rational behavior are highly restrictive, and that there

are instances when a SEGS technique finds fit candidates faster than the extended

technique.

The implication is that the SEGS scheme, which also employs rational behavior,

is more generally applicable for optimal search and resilient behavior design than

the CGAFPS. Hence, the CGAFPS must be modified for use in optimization with

dynamic fitness landscapes if rational behavior is desired. However, we also show

that the CGAFPS typically finds fit candidates faster than a SEGS for non-resilient

behavior design; this trade-off is consistent with the No Free Lunch theorem for

optimization [140].
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This section generalizes selective evolutionary generation by describing the concept

of multi-selective generation, which utilizes the fitness value of a candidate optimizer,

all fitness values in a neighborhood of the candidate optimizer, and the level of se-

lectivity. That is, multi-selective generation assumes a more global knowledge of the

reward function than selective generation, but the trade-off is faster behavior design.

More specifically, the following subsections utilize a novel, extended mathematical

definition of selection, the Multi-Select function, for use in behavior design. This

function is used to prove that multi-selective generation is a sufficient condition for

rational behavior, under certain technical assumptions. Since rational behavior is it-

self a sufficient condition for resilience and opportunism, the resultant multi-selective

generation scheme is therefore resilient and opportunistic. The limitations imposed

by the technical assumptions are then discussed, along with their relevance to the

CGAFPS. Lastly, the convergence properties of multi-selective generation are com-

pared to a SEGS.

The authors of [28] (a recent overview of evolutionary computation for dynamic

fitness landscapes) state that ‘there are no published results that are comparative to

the patentable works cited for static environments,’ a failing that this section seeks

to remedy.

4.6.1 Theoretical Extensions

The following definitions are required to extend the theoretical foundations of

selective evolutionary generation to multi-selective generation.

Definition 4.8. A generation system is a triple E = (X,R,G), where

• X is a set of n cells, X = {x1, x2, . . . , xn};

• R is a set of m resources, R = {r1, r2, . . . , rm}, that can be utilized for cell

reproduction;
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• G : X×R→ X is a generation function that maps a parent cell and a resource

into a descendant cell outcome.

Definition 4.9. The set of cells, X, of the generation system E = (X,R,G) is

reachable through G and R if, for all pairs x1, x2 ∈ X, there exists k ∈ N and a

sequence (rk) ∈ R such that x2 = G (x1, (rk)).

Definition 4.10. Given a cell set, X, and a fitness function F : X → R
+, let Multi-

Select : Xk × N → X be a random function such that if x1, . . . , xk ∈ Xk are any k

cells, and N ∈ N is the level of selectivity, then

Multi-Select(x1, . . . , xk, N) = xi, with probability
F (xi)

N

k
∑

j=1
F (xj)

N
, 1 ≤ i ≤ k. (4.81)

We can now define a multi-selective generation system (MSGS).

Definition 4.11. A multi-selective generation system is a quadruple Γ = (X,R,G, F ),

where

• (X,R,G) is a generation system;

• F : X → R
+ is a function that evaluates cell fitness;

• the set of cells, X, is reachable through G and R; and

• the dynamics of the system are given by

X (t + 1) = Multi-Select (X (t), G (X (t), r1) , . . . , G (X (t), rm) , N) . (4.82)

In (4.82), X (t) denotes the realization of a random cell variable at time t, ri is a

resource where 1 ≤ i ≤ m, G(X (t), ri) denotes the offspring of the realized random

cell utilizing resource ri at time t, and X (0) has a known probability mass function.

The cells G (X (t), ri) , 1 ≤ i ≤ m, constitute the largest neighborhood of X (t) within
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which a transition is possible. The fitness values of cells in this neighborhood are

required at each step.

Also in (4.82), the probability of a cell realization at some future time given the

present cell realization is conditionally independent of the past time history of cell

realizations. Thus, the dynamics of an MSGS form a discrete-time homogeneous

Markov chain. This property is useful for the MSGS analysis that follows.

Like the Select function, the Multi-Select function has a number of interesting

properties, including:

• For all N and for all 1 ≤ i ≤ k, 1 ≤ j ≤ k,

Pr[Multi-Select(x1, . . . , xk, N) = xi]

Pr[Multi-Select(x1, . . . , xk, N) = xj]
=

(

F (xi)

F (xj)

)N

. (4.83)

That is, the ratio of the probabilities of selecting any two cells is equal to the

ratio of their respective fitnesses raised to the power N .

• For N = 0, the values of fitnesses are irrelevant. That is, for all 1 ≤ i ≤ k,

Pr[Multi-Select(x1, . . . , xk, 0) = xi] = 1/k. (4.84)

• When N → ∞, if there is a unique index, I, such that F (xi) is maximized for

i = I then

Pr[Multi-Select(x1, . . . , xk, N) = xI ]→ 1. (4.85)

• If all the fitnesses are equal then, for all N and for all 1 ≤ i ≤ k,

Pr[Multi-Select(x1, . . . , xk, N) = xi] = 1/k. (4.86)

Section 3.2 demonstrates that, for each iteration of the CGAFPS, the ratio of

the probability of selecting an unchanged cell as a member of the population for the
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next generation to the probability of selecting an offspring of this cell (i.e., a mutated

and/or recombined version of the cell) as a member of the population for the next

generation is proportional to the fitness ratio of this cell and its offspring. If the

constant of proportionality is one, then a particular case of (4.83) is obtained with

N = 1. For this section, our extension of the SEGS scheme is such that there is

another similarity with the CGAFPS: fitness proportional selection is a particular

case of multi-selective generation with N = 1.

The concept of multi-selective generation has been previously implemented exper-

imentally with great success. Consider the well-known paper, [141], which describes

a system for the evolution of virtual creatures in a fitness landscape that changes

frequently because of competition. The work utilizes an all vs. best strategy, defined

as the competition between all individuals in a generation and a single opponent with

the highest fitness from the previous generation. This strategy is what we have called

multi-selective generation. The paper states that

‘the most “interesting” results occurred when the all vs. best competition

pattern was used. Both one and two species evolutions produced some

intriguing strategies.’

To apply the theory of rational behavior for time-homogeneous, irreducible, er-

godic Markov chains, we need the following.

Definition 4.12. Let Γ = (X,R,G, F ) be a multi-selective generation system. Let

xi, xj ∈ X be any two cells. The descendancy matrix, δ, has elements

δij =



















1 if ∃r ∈ R : xj = G(xi, r), 1 ≤ i, j ≤ n,

0 otherwise.

(4.87)

Hence, the descendancy matrix indicates whether it is possible to produce cell xj in

one step from cell xi, using any resource. Recall that an MSGS follows the stochastic
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Markov process described by (4.82). The descendancy matrix is used when specifying

a matrix of transition probabilities that describes the cell-to-cell transitions that occur

as a result of the multi-selection dynamics. For the MSGS Γ = (X,R,G, F ), the

matrix of transition probabilities, P, has elements

Pij = Pr[X (t + 1) = xj | X (t) = xi], (4.88)

= Pr[Multi-Select (xi, G (xi, r1) , . . . , G (xi, rm) , N) = xj | X (t) = xi]×

Pr[offspring is xj | progenitor is xi] (4.89)

=



































F (xj)
N

m
∑

k=1

F (G(xi,rk))N+F (xi)
N

δij, ∀j 6= i,

1−
n
∑

j=1
j 6=i

F (xj)
N

m
∑

k=1

F (G(xi,rk))N+F (xi)
N

δij, if j = i.

(4.90)

4.6.2 Dynamic Properties of Multi-Selective Generation Sys-

tems

We can now state some dynamic properties of multi-selective generation systems,

under certain technical conditions.

Theorem 4.14. For the ergodic MSGS Γ = (X,R,G, F ), assume that

i) the descendancy matrix, δ, is symmetric, and

ii) ∀1 ≤ i, j ≤ n with δij = 1,

m
∑

k=1

F (G (xi, rk))
N + F (xi)

N =
m
∑

k=1

F (G (xj, rk))
N + F (xj)

N . (4.91)

Then the Markov chain representing the stochastic dynamics of the ergodic MSGS

1. behaves rationally with fitness F and level N . That is, the row vector π =
[

π1 π2 . . . πn

]

, where πi satisfies (4.2), is a left eigenvector of P, the matrix
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of transition probabilities for Γ, with corresponding eigenvalue 1 (i.e., πP = π).

Hence, π is the vector of stationary probabilities for the MSGS.

2. is time-reversible, i.e.,

πiPij = πjPji, ∀i, j. (4.92)

Proof. See Appendix A.

As a result of Theorem 4.6, the stochastic dynamics of the ergodic MSGS with

sufficient conditions i) and ii) are resilient and opportunistic.

The symmetry condition i) on the descendancy matrix, δ, implies that there exists

a forward and reverse transition between any pair of cells. This condition is similar

to the one in Section 4.2.2.

Condition ii) is a restrictive sufficient condition. It states that the sum of the

fitness values of possible transitions in the neighborhood of xi, which includes xj, is

equal to the sum of the fitness values of possible transitions in the neighborhood of xj,

which includes xi. Although this condition is an extension of one implicitly assumed

in Section 4.2.2, which is that the addition of any two fitness values commute, the

extended condition ii) may be difficult to satisfy.

If condition ii) is satisfied, then there is a need to evaluate the fitness of cells in a

sub-population of candidate optimizers (as in the CGAFPS). For m > 2, an ergodic

MSGS is more computationally expensive than an ergodic SEGS, but can be less

expensive than evaluating the fitness of all elements in the domain of the objective

function at the start of the search.

Necessary conditions for rational behavior are as follows.

Theorem 4.15. For the ergodic MSGS Γ = (X,R,G, F ), assume that the Markov

chain representing the stochastic dynamics of the ergodic MSGS behaves rationally

68



with fitness F and level N . Then

n
∑

i=1

F (xi)
N

m
∑

k=1
F (G (xj, rk))

N + F (xj)
N

δji =
n
∑

i=1

F (xi)
N

m
∑

k=1
F (G (xi, rk))

N + F (xi)
N

δij. (4.93)

If the Markov chain representing the stochastic dynamics of the ergodic MSGS is also

time-reversible, then

δji
m
∑

k=1
F (G (xj, rk))

N + F (xj)
N

=
δij

m
∑

k=1
F (G (xi, rk))

N + F (xi)
N

. (4.94)

Proof. See Appendix A.

For finite N and cell fitness values, (4.94) is thus a necessary and sufficient con-

dition for rational behavior. Therefore, not satisfying (4.94) results in behavior that

is not rational. Since the CGAFPS is not often applied such that (4.94) is true with

N = 1, the CGAFPS does not achieve rational behavior in these instances. Modifi-

cation is required.

4.6.3 Convergence Properties of Multi-Selective Generation

Systems

We now compare the convergence rates of an ergodic MSGS and an ergodic SEGS,

by utilizing the second largest eigenvalue as a measure of convergence rate — the

smaller this value, the more quickly the Markov chain dynamics converge to steady

state. We make use of the result in [142] for reversible Markov chains with a common

underlying graph. Let the underlying graph representations of the ergodic MSGS and

the ergodic SEGS be the same, and let the sufficient conditions for rational behavior

with fitness F with level N be satisfied. If λM
2 < 1 is the second largest eigenvalue

of the MSGS probability transition matrix PM , and λS
2 < 1 is the second largest
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eigenvalue of the SEGS probability transition matrix PS then, from [142],

(

1− λM
2

)

≥

min
{i,j} is an edge

wM
ij

wS
ij

max
i

πM
i

πS
i

(

1− λS
2

)

, (4.95)

where

wM
ij = πM

i PM
ij , (4.96)

wS
ij = πS

i P S
ij . (4.97)

Because both techniques yield rational behavior, πM
i = πS

i . Consequently,

(

1− λM
2

)

≥

(

min
{i,j} is an edge

PM
ij

P S
ij

)

(

1− λS
2

)

, (4.98)

or
(

1− λM
2

)

≥ α
(

1− λS
2

)

, (4.99)

where, from (4.34) and (4.90),

α = min
{i,j}

is an edge

F (xi)
N + F (xj)

N

γij







m
∑

k=1
G(xi,rk) 6=xj

F (G (xi, rk))
N + F (xi)

N + F (xj)
N







, (4.100)

where γij is a probability value on the interval (0, 1].

In (4.99), if α = 1, then λM
2 ≤ λS

2 . Since N →∞ implies that α→ 1, non-resilient

multi-selective generation converges to steady state faster than a SEGS process.

In (4.99), if α > 1, then λM
2 ≤ λS

2 . This occurs for a typical application of

the SEGS, where the number of resources is large enough so that the probability

distribution on these resources (which is indicated by γij, and is typically a uniform

probability distribution) is small, yet the number of resources is also small enough

70



so that the corresponding MSGS implementation does not select among large fitness

neighborhoods at each generation. For this scenario, a SEGS requires a lot more

exploration than the MSGS.

In (4.99), if 0 < α < 1, then λM
2 ≤ αλS

2 + 1 − α. That is, for small α, it is

possible that λS
2 ≤ λM

2 . This occurs when γij is large and N is small. The physical

interpretation of this scenario is as follows: the resource choice (indicated by γij) is

biased in such a way that the probability of SEGS transitions to cells of higher fitness

is greater than the probability of corresponding MSGS transitions. Hence, the faster

SEGS convergence to steady state for this scenario. We believe that such a bias is

possible, but is atypical.

The above leads to the following conclusion: while the CGAFPS may not satisfy

the necessary conditions for rationality and hence not design rational behavior, the

algorithm will, in general, converge to steady state faster than a SEGS. Such a trade-

off is consistent with the No Free Lunch theorem for optimization [140].

4.6.4 Illustrative Example of a Multi-Selective Generation

System

For simplicity, we illustrate the theory in this section with an example that is easy

to analytically compute.

Consider the generation system (X,R,G), where X = {x1, x2, x3}, R = {r1, r2},

G(x1, r1) = x2, G(x1, r2) = x3, G(x2, r1) = x3, G(x2, r2) = x1, G(x3, r1) = x1, and

G(x3, r2) = x2 (see Figure 4.4).

The descendancy matrix for this generation system is

δ =

















0 1 1

1 0 1

1 1 0

















. (4.101)
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r1

r2 r2

r1 r1

x1 x3
x2

Figure 4.4: The directed graph of the example in Section 4.6.4.

Let F (x1) = f1, F (x2) = f2 and F (x3) = f3. Let N be a finite level of selectivity.

Utilizing (4.90), the matrix of transition probabilities for the selective evolutionary

generation system is

P =
1

fN
1 + fN

2 + fN
3

















fN
1 fN

2 fN
3

fN
1 fN

2 fN
3

fN
1 fN

2 fN
3

















. (4.102)

We see that the MSGS is both aperiodic and positive recurrent, and hence, ergodic.

The stationary distribution of the SEGS can be computed to be

π =
1

fN
1 + fN

2 + fN
3

[

fN
1 fN

2 fN
3

]

. (4.103)

The example has been constructed such that the sufficient conditions for rational

behavior of the ergodic MSGS are satisfied.

Taking partial derivatives, the extrinsic and intrinsic resilience equations of the

three cells of the MSGS satisfy (4.23) and (4.24). Since none of these equations are

zero, the MSGS is resilient and opportunistic. Indeed, because of the cardinality of X

and the feasible transitions specified by G, multi-selective generation is able to design,

in one step, the desired behavior. This corresponds to the second largest eigenvalue

of P being 0. Such speed is not matched by a SEGS, because the technique is limited

to exploring one transition at a time.

72



4.6.5 Summary

Multi-selective generation extends a viable SEGS technique that uses rationality

to achieve resilient and opportunistic behavior. Rational behavior is desirable because

of its capacity for optimal search. However, the conditions for this extended scheme to

behave rationally are highly restrictive. Since the technique is a generalization of the

Canonical Genetic Algorithm with Fitness Proportional Selection (CGAFPS), it is

unlikely that a typical application of the CGAFPS behaves rationally. Multi-selective

generation can find a fit candidate optimizer faster than the original technique that

it extends, but exceptions do exist. Therefore, the original SEGS scheme should be

preferred for optimal search and resilient behavior design.
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CHAPTER 5

EVOLUTION OF FLAPPING WING GAITS

5.1 Problem Description

One possible application of selective evolutionary generation systems is the on-line

selection of flapping wing gaits during flight. This application requires resilient and

opportunistic optimization because mission phase transitions may change the fitness

of the current flapping gait. For instance, a micro air vehicle may scout a target

by favoring a hovering form of flapping flight, engage the target after increasing the

fitness of descending flapping gaits, and then quickly escape after deeming ascending

gaits to be the most fit. Wind fluctuations within each mission phase are another

example of possible fitness perturbations.

Current optimization of low Reynolds number flapping gaits requires multiple iter-

ations of computationally expensive three dimensional flow simulations, on multiple

nodes taking days, or even weeks, to complete [143]. Moreover, these simulations de-

pend on flow model physics that are not well understood. Thus, there is a need for a

computationally inexpensive, model-independent, resilient, opportunistic, global, and

on-line selection technique for flapping wing flight.

There are examples of flapping gait evolution in the literature [144–147]. The

results presented in these works are either complicated by hardware-specific interac-

tions or derived from aerodynamic and hardware models with inaccurate assumptions

(e.g., steady fluid flow) for simplicity. The tolerance to fitness function perturbations
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is also not examined. Our contributions in this area are unique because we achieve

resilient and opportunistic flapping gaits without significant computation.

5.2 Surrogate Model

The following example applies the theory developed in this dissertation to a vali-

dated model that approximates the real-world physics of flapping flight. The model

outputs a scalar for every acceptable input vector, and this scalar output makes it easy

to discuss and verify claims of resilience and opportunism for a realistic application.

The surrogate model for hovering flight [148] predicts a lift coefficient, CL, for a

prescribed flapping motion with various input kinematic parameters. This flapping

motion is described by

h(t) = ha(t) sin(ωt), (5.1)

α(t) = 90− αa(t) sin (ωt + φα (t)) , (5.2)

where ha(t) ∈ [1, 2] and αa(t) ∈ [45, 80] are the piecewise-constant amplitudes of

flapping stroke height and pitch respectively, ω is a frequency that depends on ha and

a constant Reynolds number of 100, and φα(t) ∈ [60, 120] is the piecewise-constant

phase shift angle for flapping pitch. The flapping motion described in (5.1)–(5.2) leads

to the computation of a lift coefficient, CL, through the surrogate model. Hence, the

hovering flapping flight problem: given a time history of the target lift coefficient,

CLdes
(t), determine suitable time-varying flapping wing kinematic parameters that

meet the target.

We utilize the following evolutionary generation system, (X,R, P,G), which is

formulated as a random walk over a discretized search space.
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• The set of cells, X, is the set of ordered triples (ha (t) , αa (t) , φα (t)), where

ha (t) ∈ {1, 1.1, 1.2, . . . , 1.9, 2}, (5.3)

αa (t) ∈ {45, 46, 47, . . . , 79, 80}, (5.4)

φα (t) ∈ {60, 61, 62, . . . , 119, 120}. (5.5)

• The set of resources, R, is the set {r1, r2, r3, r4, r5, r6}, with ri = ei, 1 ≤ i ≤

6 (where ei are the standard basis vectors for R
6). This choice of resources

facilitates the perturbation of one of the elements of a cell in either a positive

or negative direction when an offspring is generated.

• The probability mass function on R, P , is the discrete uniform distribution.

This choice of probability mass function ensures that the matrix of generation

probabilities is symmetric.

• The generation function, G, applied to X as

G ((ha (t) , αa (t) , φα (t)) , ri) , 1 ≤ i ≤ 6, (5.6)

is the triple given by







































































































































0.1 −0.1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1





















ri +





















ha (t)

αa (t)

φα (t)





















,

if 1 < ha (t) < 2, 45 < αa (t) < 80,

60 < φα (t) < 120,

(ha (t) , αa (t) , φα (t)) , otherwise.

(5.7)
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Since the objective is for CL(t) to track CLdes
(t), we use the fitness function

F (ha (t) , αa (t) , φα (t)) = exp
(

− (Kf (CLdes
(t)− CL(t)))2

)

, (5.8)

where

Kf = 10, (5.9)

and

CL(t) = CL (ha (t) , αa (t) , φα (t)) (5.10)

is the output of the surrogate model. Note that the fitness function in (5.8) has the

following properties.

• Akin to a membership function, the fitness function is normalized so that a

fitness between 0 and 1 is achieved depending on how well the model output

matches the desired output. A fitness of 1 represents a perfect output match,

whereas a fitness of 0 signifies a poor match.

• The fitness function utilizes a gain parameter, Kf , which indicates how dissimi-

lar the desired output and a high-fitness true output are tolerated to be. Larger

gains indicate that the SEGS is more permissive of poor matches. The gain pa-

rameter is also related to the level of selectivity, N , because the latter is always

used as an exponent of fitness. Hence, in the above fitness function, Kf plays a

similar role to N .

• Corresponding to the above, it can be shown that the fitness function is pro-

portional to a Gaussian probability density function with mean equal to the

desired output, variance equal to 1
2K2

f

, and a constant of proportionality equal

to
√

2π
K2

f

.
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5.3 Surrogate Model Results

A sample run of the evolution scheme when N = 5 is depicted in Figures 5.1 to 5.4.

A cell triple that achieves satisfactory performance is found within 1000 generations,

and the scheme is resilient because it quickly finds a new triple that achieves an

acceptable output when the target lift coefficient, and hence the fitness function,

changes. In Figures 5.1 to 5.3, the red vertical dashed lines indicate a generation for

which the evolved flapping forward and backward motion is illustrated in Figure 5.4.

For generations 1, 900, 1025, and 2000, the plots in Figure 5.4 each display 10

snapshots of a 15% elliptical airfoil through a flapping half-stroke. The solid circle

represents the leading edge of the airfoil, which moves in an aircraft body-fixed ref-

erence frame with neutral position at (0,0). The arrows on the forward half-stroke

plots indicate that the airfoil travels from the most rearward position to the most for-

ward position, whereas the opposite is true for a backward half-stroke. Although the

periods of the strokes vary at different generations because of the constant Reynolds

number, the snapshots are taken at the same fractional period interval. Therefore, a

stroke with more spacing between snapshots has a faster motion than a stroke with

snapshots that are closely spaced.

Typically, the scheme averages 1 minute 18 seconds to compute the output of 1000

generations while running in MATLAB on a 2.50 GHz dual-core processor laptop with

4.00 GB of RAM and the Windows Vista operating system.
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Figure 5.1: Target (dashed) and actual (solid) lift coefficients per generation.
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Figure 5.2: Fitness per generation.
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Figure 5.3: Flapping wing kinematic parameters per generation.
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Figure 5.4: Snapshots of the forward and back half-strokes of the flapping wing sam-
pled at the 1st, 900th, 1025th, and 2000th generations.
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5.4 Surrogate Model Benchmarks

This section examines the effects of parameter variations of the SEGS detailed in

Section 5.2. Comparisons to implementations of the canonical genetic algorithm with

fitness proportional selection and the (1+1) evolutionary strategy are also included.

5.4.1 Level of Selectivity Effects

Sample runs of the SEGS for various levels of selectivity are plotted in Figures 5.5

to 5.7. For this comparison, the SEGS was initialized to the triple (ha(0), αa(0), φα(0))

= (1.5, 62, 60), and the target lift coefficient was held constant at CL = 0.5. These

figures illustrate the rationale for choosing N = 5 in Section 5.3. At low levels

of selectivity (N = 0.5 and N = 1), the SEGS wanders through the search space

and does not reach the target lift coefficient within a user-specified limit of 1000

generations. Increases in the level of selectivity cause a corresponding improvement

in target lift coefficient tracking. The N = 5 trajectory depicts excursions away from

the desired lift coefficient; these excursions are minimized at the slightly higher level

of selectivity, N = 10. The N = 100 trajectory achieves near perfect lift coefficient

tracking with few excursions. A suitable choice of the level of selectivity that tolerates

excursions is therefore either N = 5 or N = 10, since excursions are one indicator

of resilience. Another indicator of resilience is the initial behavior of the N = 5 and

N = 10 trajectories; however, these two trajectories are approximately equal during

the first 50 generations. Since the N = 5 trajectory achieves tracking and greater

resilience than the N = 10 trajectory, we choose the level of selectivity N = 5.

The trade-off between optimality and resilience is documented in Figures 5.8

through 5.11. Figures 5.8 and 5.9 show simulations where the target lift coefficient

varies frequently during 1000 SEGS generations, and the target includes a CL = 0.7

value that is beyond the flapping wing capabilities that the surrogate model simulates.
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Figure 5.5: Level of selectivity effects on lift coefficients per generation.
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Figure 5.6: Level of selectivity effects on the fitness per generation.
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Figure 5.7: Level of selectivity effects on kinematic parameters per generation.

When the target lift coefficient variations are large, it is clear from Figure 5.8

that the N = 5 trajectory displays a more immediate response to the change in

target than the N = 100 trajectory. This response is also evident in the initial higher

fitness values of the N = 5 trajectory in Figure 5.9. However, the more selective

N = 100 trajectory overtakes the N = 5 trajectory after a short period of time,

in accordance with the shorter convergence times and optimality properties of high

levels of selectivity. Both trajectories handle an unattainable target similarly. The

resilience effects of a lower level of selectivity are not as pronounced for small target

variations (see Figures 5.10 and 5.11).

The effect of the level of selectivity on one possible stopping criterion is outlined

in Table 5.1. The table lists the average number of generations required to find a

flapping wing gait with a lift coefficient that is within ±3% of the target value. This

tolerance corresponds to a fitness value that is at least 0.975 or greater. As expected,

an increase in N decreases the number of generations to find a “good” solution.
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Figure 5.8: Target variations and actual lift coefficients per generation, illustrating
the trade-off between optimality and resilience.
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Figure 5.9: Fitness per generation, illustrating the trade-off between optimality and
resilience.
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Figure 5.10: Target fluctuations and actual lift coefficients per generation.
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Figure 5.11: Fitness per generation for a fluctuating target.
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Table 5.1: Level of Selectivity Effects on a Stopping Criterion

N Initial Conditions Target CL Average Number of Generations

1 (1.5,62,60) 0.5 1218

5 (1.5,62,60) 0.5 399

10 (1.5,62,60) 0.5 246

100 (1.5,62,60) 0.5 191

5.4.2 Initialization Effects

The initial conditions of a SEGS algorithm affect performance. Consider Table

5.2, which displays the effect of various initializations on the average number of gen-

erations required to find a flapping wing gait with a lift coefficient that is within

±3% of the target. As the table indicates, there is significant disparity in the aver-

age number of generations that is required before the stopping criterion is reached.

Hence, initial conditions do play a role in the convergence of the SEGS algorithm.

Moreover, the number of fit solutions in the search space also affect convergence. The

surrogate model employed by the SEGS was trained on 24 samples of two dimen-

sional computational fluid dynamics data, of which four samples had a lift coefficient

of approximately 0.5 (the most number of samples for a given lift coefficient), and

only one sample had a lift coefficient above 0.6 [143]. Accordingly, the effect of the

initializations in Table 5.2 on the average number of generations required to find a

flapping wing gait with lift coefficient within ±3% of 0.62 is tabulated in Table 5.3.

It is clear that a significantly greater average number of generations is required when

there are fewer fit solutions in the search space.
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Table 5.2: Initialization Effects on a Stopping Criterion

N Initial Conditions Target CL Average Number of Generations

5 (1.5,62,60) 0.5 399

5 (1.5,45,60) 0.5 370

5 (1.5,62,90) 0.5 79

5 (1,45,60) 0.5 368

5 (1,45,120) 0.5 1

5 (1,80,60) 0.5 466

5 (1,80,120) 0.5 120

5 (2,45,60) 0.5 390

5 (2,45,120) 0.5 94

5 (2,80,60) 0.5 328

5 (2,80,120) 0.5 120

5.4.3 Discretization Effects

The SEGS in Section 5.2 discretizes the search space into ha step sizes of 0.1, and

into αa and φα step sizes of 1 degree. The type of discretization employed by the

SEGS affects the average number of generations required to find a flapping wing gait

subject to the stopping criterion previously outlined. Table 5.4 provides the details

for possible discretizations, with N = 5, initial conditions (ha (0) , αa (0) , φα (0)) =

(1.5, 62, 60), and target lift coefficient 0.5.

The table hints at the prospect of an optimal discretization of the search space

that minimizes the average number of generations required to find a fit flapping wing
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Table 5.3: Initialization Effects on a Stopping Criterion with Few Fit Solutions

N Initial Conditions Target CL Average Number of Generations

5 (1.5,62,60) 0.62 1171

5 (1.5,45,60) 0.62 967

5 (1.5,62,90) 0.62 468

5 (1,45,60) 0.62 1065

5 (1,45,120) 0.62 80

5 (1,80,60) 0.62 1280

5 (1,80,120) 0.62 150

5 (2,45,60) 0.62 995

5 (2,45,120) 0.62 1

5 (2,80,60) 0.62 820

5 (2,80,120) 0.62 161

Table 5.4: Discretization Effects on a Stopping Criterion

Discretization Type ha Step αa Step φα Step Average Number of Generations

Fine 0.05 0.5 0.5 918

Baseline 0.1 1 1 399

Coarse 0.2 5 5 49

Very Coarse 0.5 10 10 58
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gait. However, care must be taken to not use too coarse a discretization in the quest

for reduced computation, since such a discretization may omit subtle features of the

search space. It is expected that the optimal discretization be application dependent.

5.4.4 Comparison to Other Algorithms

Here, we compare the SEGS algorithm to implementations of the canonical genetic

algorithm with fitness proportional selection and the (1+1) evolutionary strategy.

These two algorithms are chosen because of their similarity to the SEGS approach.

A description and analysis of these algorithms is contained in Section 3.2.

A sample run of the canonical genetic algorithm with fitness proportional selection

is depicted in Figures 5.12 to 5.14. The algorithm was initialized with a population

of four triples: (1.5, 62, 60), (1.0, 45, 60), (2.0, 80, 120) and (1.5, 62, 90), resulting in a

higher starting fitness than the SEGS approach. A cell triple that achieves satisfac-

tory performance is found within 1000 generations. Typically, the scheme averages

1 minute 47 seconds to compute the output of 1000 generations while running in

MATLAB on a 2.50 GHz dual-core processor laptop with 4.00 GB of RAM and the

Windows Vista operating system. This time is longer than the average computation

time for the SEGS algorithm.

A sample run of the (1+1) evolutionary strategy is depicted in Figures 5.15 to 5.17.

A cell triple that achieves satisfactory performance is found within 1000 generations.

Typically, the scheme averages 1 minute 18 seconds to compute the output of 1000

generations while running in MATLAB on a 2.50 GHz dual-core processor laptop with

4.00 GB of RAM and the Windows Vista operating system. This time is identical to

the average computation time for the SEGS algorithm.

90



0 500 1000 1500 2000
0

0.2

0.4

0.6

Generation

M
ax

im
um

 F
itn

es
s 

Li
ft 

C
oe

ffi
ci

en
t i

n 
P

op
ul

at
io

n

Figure 5.12: Target (dashed) and actual (solid) maximum fitness lift coefficient in the
CGAFPS population per generation.
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Figure 5.13: Maximum fitness value in the CGAFPS population per generation.
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Figure 5.14: Flapping wing kinematic parameters corresponding to the maximum fit-
ness lift coefficient in the CGAFPS population per generation.
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Figure 5.15: Target (dashed) and actual (solid) lift coefficients per generation with
the (1+1)-ES.

92



0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Generation

F
itn

es
s

Figure 5.16: Fitness per generation with the (1+1)-ES.

0 500 1000 1500 2000
1

1.5

2

Generation

h 0

0 500 1000 1500 2000
40

60

80

Generation

α a

0 500 1000 1500 2000
60

80

100

Generation

φ α

Figure 5.17: Flapping wing kinematic parameters with the (1+1)-ES.
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Figures 5.18 to 5.20 visually compare the resilience characteristics of these two

algorithms to the SEGS technique. The canonical genetic algorithm with fitness

proportional selection exhibits resilient behavior, which is unsurprising since it is

similar to a SEGS scheme with N = 1. The (1+1) evolutionary strategy behaves like

a SEGS with a level of selectivity that exceeds 100.
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Figure 5.18: Comparison of the maximum fitness lift coefficient in the CGAFPS pop-
ulation and the SEGS lift coefficient per generation.
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Figure 5.19: Comparison of the maximum fitness lift coefficient in the CGAFPS pop-
ulation and the maximum fitness lift coefficient of four SEGS runs per
generation; the four SEGS runs were uniquely initialized with a member
of the initial population of the CGAFPS.

0 200 400 600 800 1000
0

0.2

0.4

0.6

Generation

C
oe

ffi
ci

en
t o

f L
ift

 

 

(1+1)−ES
N = 5
N = 100
Target

Figure 5.20: Comparison of the lift coefficients of the (1+1)-ES and the SEGS per
generation.
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5.5 Theodorsen-Garrick Model

This example utilizes the developed theory and a model embodied by unsteady

flow equations to consider the standard reference-tracking problem in control systems

within the context of flapping flight. The work here is different from [149–155] in that

we evolve flapping wing parameters for trajectory tracking, instead of taking a control-

theoretic approach. The chosen model outputs forces from which trajectories can be

computed, and these trajectories are then analyzed by a SEGS. This approach, and

the other differences from the previous example (forward motion of the flapping wing,

incorporation of actual physics, and an addition to the literature), are a legitimate

reason to include the application here.

The Theodorsen-Garrick model [156, 157] predicts the lift and thrust forces on

a flat plate undergoing a prescribed flapping motion with various input kinematic

parameters. This flapping motion is described by

h(t) = ha(t) sin (ω (t) t + φh (t)) , (5.11)

α(t) = αa(t) sin (ω (t) t + φα (t)) , (5.12)

where ha(t) ∈ (0, 1] and αa(t) ∈ [−0.5, 0.5] are the piecewise-constant amplitudes of

flapping stroke height and angle of attack respectively, ω(t) ∈ (0, 1] is a piecewise-

constant frequency, and φh(t) ∈ [−0.5, 0.5] and φα(t) ∈ [−0.5, 0.5] are the piecewise-

constant phase shift angles for flapping stroke height and angle of attack, respectively.

The flapping motion described in (5.11)–(5.12) leads to the computation of lift and

thrust forces through the equations stated in [157]. These forces determine the trajec-

tory followed by the flapping wing; hence, the flapping flight motion problem: given

a target trajectory (e.g., a constant altitude forward motion trajectory), find suitable

flapping wing kinematic parameters that meet the target.

We utilize the following evolutionary generation system, (X,R, P,G), which is
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formulated as a random walk over a discretized search space.

• The set of cells, X, is the set of ordered pentuples

(ha (t) , ω (t) , φh (t) , αa (t) , φα (t)), where

ha (t) ∈ {0.1, 0.2, 0.3, . . . , 0.9, 1}, (5.13)

ω (t) ∈ {0.05, 0.1, 0.15, . . . , 0.95, 1}, (5.14)

φh (t) ∈ {−0.5,−0.45,−0.4, . . . , 0.45, 0.5}, (5.15)

αa (t) ∈ {−0.5,−0.45,−0.4, . . . , 0.45, 0.5}, (5.16)

φα (t) ∈ {−0.5,−0.45,−0.4, . . . , 0.45, 0.5}. (5.17)

• The set of resources, R, is the set {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}, with ri = ei,

1 ≤ i ≤ 10 (where ei are the standard basis vectors for R
10). This choice of

resources facilitates the perturbation of one of the elements of a cell in either a

positive or negative direction when an offspring is generated.

• The probability mass function on R, P , is the discrete uniform distribution.

This choice of probability mass function ensures that the matrix of generation

probabilities is symmetric.

• The generation function, G, applied to X as

G ((ha (t) , ω (t) , φh (t) , αa (t) , φα (t)) , ri) , 1 ≤ i ≤ 10, (5.18)
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,

if 0.1 < ha (t) < 1, 0.05 < ω (t) < 1,

− 0.5 < φh (t) < 0.5, −0.5 < αa (t) < 0.5,

− 0.5 < φα (t) < 0.5,

(ha (t) , ω (t) , φh (t) , αa (t) , φα (t)) , otherwise.

(5.19)

The flapping wing parameters evolved by the SEGS are inputs for the Theodorsen-

Garrick model, which outputs lift L(τ) and time-averaged-thrust T (τ) over time τ .

These forces are in turn inputs for the following double-integrator, unit-mass wing
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, (5.20)

where (x (τ) , y (τ)) is the trajectory of the center of mass of the flapping wing. This

trajectory is sampled ν times, yielding (x (k) , y (k)), 1 ≤ k ≤ ν. For each x(k), the

target ydes(k) is computed. Let

AvgDistance(t) =

ν
∑

k=1
|ydes(k)− y(k)|

ν
(5.21)

be the mean difference between the target and current trajectories. Since the objective

is to track the target, we use the following fitness function for the SEGS,

F (ha (t) , ω (t) , φh (t) , αa (t) , φα (t)) = exp
(

− (0.1AvgDistance(t))2
)

. (5.22)

5.6 Theodorsen-Garrick Model Results

A sample initial trajectory together with a trajectory obtained from that sample

after 200 generations with N = 5 are plotted in Figure 5.21, where the trajectories are

depicted over the same period of time. The figure shows that the evolved kinematic

parameters reduce altitude excursions away from the target trajectory by a factor

of four while utilizing roughly the same amount of time-averaged-thrust that was

specified by the initial set of kinematic parameters. Moreover, the average evolved

trajectory tracks the constant altitude desired trajectory, while the average initial

trajectory does not.
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Figure 5.21: Target trajectory (dashed), initial trajectory (solid) and the 200th
evolved (dashed-dotted) trajectory.

The scheme requires, on average, 2 minutes 34 seconds to compute the output of

200 generations while running in MATLAB on a 2.50 GHz dual-core processor laptop

with 4.00 GB of RAM and the Windows Vista operating system.
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CHAPTER 6

EVOLUTION OF ROBUST CONTROL

6.1 Problem Description

This chapter applies the theory developed in Chapter 4 to controller design for a

dynamic system model of a xerographic process. This model was developed with col-

laborators in industry, and refers to a state-of-the-art technological system. Utilizing

the scheme developed in this dissertation, the problem tackled in this chapter is the

optimization of control gains such that acceptable disturbance-rejection performance

is achieved by the system despite internal parameter fluctuations. For proprietary

reasons, all data in this chapter have been represented with symbols.

Xerographic images exhibit many kinds of defects, including variations in the

print of a solid color. These variations are due, in part, to the effect of disturbances

entering the system at different stages of the print process. Color variations may also

result from fluctuations in the settings of a stage. A parameter, DeltaE, exists to

quantify the output color variation relative to a print that is made in the absence of

disturbances and at nominal settings. The human eye is incapable of perceiving color

variations when the absolute value of DeltaE is less than or equal to one. Hence, the

controller is required to achieve print quality such that DeltaE is nominally zero, but

no more than ±1.
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6.2 Xerographic System Model

Consider the system block diagram in Figure 6.1, where the plants, P1 and P2,

and the plant output, v3, are subject to external disturbances d1 ∈ [d1i, d1f ] and

d2 ∈ [d2i, d2f ] as shown. The input r is a reference signal, v1, v2 and v3 are intermediate

signals, and y is the output signal DeltaE. Control signals u1 and u2 utilize the

measured signals v2 and y, and control gains K1 and K2.

P1 P2

K1 K2

r v1 v2 v3 y

u1 u2

d1 d2 d1 d2

Figure 6.1: Block diagram of the example xerographic dynamic system.

We utilize the following evolutionary generation system, (X,R, P,G), which is

formulated as a random walk over a discretized search space.

• The set of cells, X, is the set of the set of ordered pairs (K1, K2) where

K1 ∈ {−20,−19.75,−19.5, . . . , 19.75, 20}, (6.1)

K2 ∈ {−20, 19.75,−19.5, . . . , 19.75, 20}. (6.2)

• The set of resources, R, is the set {r1, r2, r3, r4}, with ri = ei, 1 ≤ i ≤ 4 (where

ei are the standard basis vectors for R
4). This choice of resources facilitates

the perturbation of one of the elements of a cell in either a positive or negative

direction when an offspring is generated.

• The probability mass function on R, P , is the discrete uniform distribution.

This choice of probability mass function ensures that the matrix of generation
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probabilities is symmetric.

• The generation function, G, when applied to (K1, K2) ∈ X using resource

ri ∈ R, 1 ≤ i ≤ 4, yields


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
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







,

if − 20 < K1 < 20, −20 < K2 < 20,

(K1, K2), otherwise.

(6.3)

The desired output is ydes = DeltaEdes = 0, with an acceptable tolerance of ±1.

Therefore, a suitable fitness function is

F = exp
(

− (Kf (ydes − y))2
)

, (6.4)

where

Kf = 1. (6.5)

6.3 Results

A sample run of the SEGS when N = 5 is depicted in Figures 6.2 to 6.5 for

fixed disturbances d1 and d2. A pair of control gains that achieves satisfactory per-

formance is found within 50 generations. To demonstrate disturbance rejection, the

disturbances are varied after 50 generations and the scheme is quickly able to find a

new pair of gains that achieves an acceptable output.
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Figure 6.2: Satisfactory output is maintained despite disturbance changes at genera-
tion 50.
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Figure 6.3: Fitness of the control gains per generation.

104



0 20 40 60 80 100
−4

−2

0

Generation

K
1

0 20 40 60 80 100
0

1

2

Generation

K
2

Figure 6.4: Control gain pairs per generation.
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Figure 6.5: Disturbance variations at generation 50.
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Similarly, the SEGS is resilient to internal model variations, and this is depicted in

Figures 6.6 to 6.8 for fixed disturbances d1 and d2, N = 5, and an internal parameter

change at the 50th generation.

Typically, the scheme averages 21 seconds to compute the output of 100 gener-

ations while running in MATLAB on a 1.4 GHz single processor desktop computer

with 1 GB of RAM.
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Figure 6.6: Satisfactory output is maintained despite an internal parameter variation
at generation 50.
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Figure 6.7: Fitness of the control gains per generation.
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107



CHAPTER 7

EVOLUTION OF RESILIENT GRAMMAR

INFERENCE

7.1 Problem Description

The problem of resilient grammar inference seeks to design the behavior of a

deterministic finite-state automaton [158] so that:

1. with high fidelity, it accepts those and only those sequences of symbols satisfying

given rules, based on a training set of sequences of symbols whose acceptability

is known, and

2. when the rules constraining the sequences of symbols change (and the training

set changes accordingly), the automaton resiliently adapts to the new rules.

The problem of resilient grammar inference is a generalization of the standard

problem of grammar inference [110, 159] (also called grammar induction or grammar

recognition), which addresses only requirement 1) above. Grammar inference has long

been acknowledged as a hard problem [160–162] with relevance to theoretical com-

puter science [163], computational learning theory [164], machine learning [108, 109],

pattern recognition [165, 166] and artificial intelligence [2] (which is itself a key en-

abling technology of robotics [167]), and has been treated in many papers (see, for

instance, the survey papers [168–173]). The traditional emphasis [173] has been on

learning regular grammars or deterministic finite-state automata, with methods for
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addressing the problem including data-dependent approaches [160, 174], lattice repre-

sentations [175, 176], evidence-driven and data-driven heuristics [177, 178], artificial

intelligence techniques [179] and genetic algorithms [180]. In practice, however, a

grammar-inferring finite-state automaton may operate in a time-varying or dynamic

environment to which it must adapt; this adaptability to an uncertain and changing

environment is a requirement of intelligence [25]. Surprisingly, the problem of resilient

grammar inference has received relatively little attention in the literature, with the

exception of [28]. Of course, the sequential repetition of any method for designing a

grammar-inferring finite-state automaton yields a resilient design method. However,

such sequential repetitions are computationally expensive. Hence, the goal of this

chapter is to present a resilient and inexpensive method for designing the behavior of

a grammar-inferring finite-state automaton.

7.2 Finite-State Automata Model

We are interested in finding deterministic finite-state automata [158] capable of

correctly accepting or rejecting training data strings, thereby inferring a regular gram-

mar. Although any regular grammar may be chosen for testing the inference capability

of a SEGS, for simplicity, the grammar that we infer is the set of all strings in {1, 0}∗

that have an even number of zeros. This simplicity allows us to identify species of

grammar-inferring automata, physiological features common to individuals within a

species, and morphological features common to all such species.

We take a deterministic finite-state automaton to be a quintuple (Q, Σ, s, A, δ),

where Q is a finite set of states, Σ = {1, 0} is the binary alphabet, s ∈ Q is the

start state, A ⊆ Q is the set of accept states, and δ : Q × Σ → Q is the transition

function. Since the set of deterministic finite-state automata is enumerable [158], each

automaton may be mapped to a unique natural number. A ν-state automaton has
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ν possibilities for the start state, 2ν choices of the accept state(s), and ν2ν feasible

transitions from state to state. Thus, there are a total of 2νν2ν+1 arrangements of a

ν-state automaton. For instance, there are two arrangements of a 1-state automaton

(where |A| = 0 and |A| = 1), which may be mapped to the natural numbers 1 and

2, respectively. Similarly, there are 128 arrangements of a 2-state automaton, which

may be mapped to the numbers 3 through 130. This process can be continued ad

infinitum.

The number 24 corresponds to the deterministic finite-state automaton in Figure

7.1, a minimal finite-state automaton that infers the chosen grammar. To interpret

this number as a finite-state automaton, consider that 24 is in the interval between 3

and 130, which implies a 2-state automaton. Since 24 is in the first half of the interval,

the first state is the start state. Next, because 24 belongs to the second sub-interval

of sixteen numbers (16 = 22·2), |A| = 1, and the first state is an accept state. The

remainder (of six), when expressed in a base equal to the number of states, indicates

the state-to-state transition for each letter in the alphabet.

Q = {q0, q1}, Σ = {1, 0}, s = {q0}, A = {q0}

q σ δ(q, σ)
q0 1 q0

q0 0 q1

q1 1 q1

q1 0 q0

0

0

1 1

q0 q1

Figure 7.1: Minimal deterministic finite-state automaton that accepts a string with
an even number of zeros.

Therefore, in this application the set of natural numbers is the set of genotypes, the
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set of deterministic finite-state automata is the set of phenotypes, and the genotype-

phenotype mapping is described by the mapping above. The pseudocode to evaluate

this mapping is provided in Appendix B. This mapping is bijective, and therefore

differs from the non-injective genotype-phenotype mapping in nature [105].

We utilize the following evolutionary generation system, (X,R, P,G).

• The set of cells, X, is the set of natural numbers {1, 2, . . . , 1× 10100}, where a

large, finite upper bound is required in accordance with Section 3.1, although

it is not necessary in practice.

• The set of resources, R, is the set {r1, r2, . . . , r41, r42}, with

ri =



















2i−1, 1 ≤ i ≤ 21,

− (2i−22) , 22 ≤ i ≤ 42.

(7.1)

• The probability mass function on R, P , is the discrete uniform distribution.

This choice of probability mass function ensures that the matrix of generation

probabilities is symmetric.

• The generation function, G, when applied to x ∈ X using resource r ∈ R, yields

G (x, r) =



















x + r, if x + r ≥ 1,

x, otherwise.

(7.2)

Note that the evolutionary generation system above describes a base-2 exponential

random walk on the set of natural numbers, X. An alternative formulation is to

represent the progenitor genotype natural number as a binary string, and perturb

one bit in this string to produce an offspring.

We design the SEGS so that one-step transitions of at least 1,000,000 between

natural number genotypes is possible. This requires the large, 42 element resource
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set above. It is certainly feasible to design the evolutionary generation system so that

fewer resources are utilized; for example, a base-10 exponential random walk on the

set of natural numbers, X, requires only thirteen resources. Unfortunately, fewer cells

are reachable through G and R in one step when the evolutionary generation system

is a base-10 exponential random walk.

As a result of the genotype-phenotype mapping defined above, the problem of

grammar inference is a particular case of an unbounded search in an ordered list

[181] for a satisfactory natural number. Unlike the standard problem treated in the

literature, multiple natural numbers are satisfactory here. This is because there are

multiple finite-state automata that can infer a given regular grammar; however, these

phenotypes can be reduced to a minimal finite-state automaton through a minimiza-

tion algorithm [163]. It is well known [181] that a base-2 exponential unbounded

search is an efficient approach to finding the desired natural number, although there

are other, more involved, algorithms that are nearly optimal [181–183].

The fitness of a phenotype is evaluated by its successful classification of a set of

training data. This training data consists of 1,024 (a design parameter) randomly

selected binary strings of length between 1 and 16 bits. The SEGS has access to

the correct classification of the binary strings, and this correct classification may be

time-varying. Due to the randomness of the training data selection, both acceptable

and unacceptable strings are included in the training set, satisfying the requirement

that positive and negative data samples be used for grammar inference [159].

Let FractionCorrect(x) denote the fraction of training data strings that is cor-

rectly accepted or rejected by the finite-state automaton x. We use the fitness function

F (x) = exp
(

− (Kf (1− FractionCorrect(x)))2
)

, (7.3)
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where

Kf = 2. (7.4)

The finite-state automata that correctly classify the training data have

FractionCorrect(x) = 1, (7.5)

and therefore have maximal fitness. For a SEGS with bounded fitness, we refer to a

cell as viable if it is maximally fit; otherwise, it is non-viable. The viable finite-state

automata form a subset of X, and coupling this subset with the generation transitions

that produce a viable descendant from a viable ancestor through other viable cells

gives us a subgraph of the directed graph representation of the SEGS. This subgraph

may have reducible classes of viable, weakly-connected cells; we call each such class

a species, i.e., a species is a set of viable cells that is arc-wise connected through G

and R.

Note that determining whether two viable cells belong to the same species can be

accomplished by using the Breadth First Search (BFS) algorithm [15] for example,

which has run-time complexity that is linear with respect to the sum of the number

of cells and number of generation transitions between cells. Also, note that reacha-

bility and irreducibility of a SEGS do not guarantee uniqueness of species: the set of

viable cells may be non-reachable and reducible, and therefore consist of disconnected

components, which are the distinct species.

We define speciation as the phenomenon whereby evolvants, generated by the

dynamics (3.3), successively reside in a species for a number of generations, leave the

species by becoming non-viable, then revisit a (possibly different) species, and so on.

We emphasize that speciation is a random phenomenon — each simulation of the

above SEGS realizes this phenomenon to a different degree.

Speciation in biology is defined as the evolution of two or more distinct species
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from a single ancestral species [105]. Our notion captures the biological definition

of speciation in the following sense: when the set of viable cells is disconnected, the

ergodicity property (see Chapter 4) guarantees that regardless of the ancestor, the

descendant will, in time, visit all of the species. Therefore, any ancestor generates

progeny that contains individuals from different species.

7.3 Results

7.3.1 Grammar Inference

The results of a typical sample run of the selective evolution scheme when N = 5

are presented in Figures 7.2 and 7.3. The figures depict that a finite-state automaton

that infers the chosen grammar is evolved within 70 generations. This finite-state

automaton correctly accepts or rejects all 1,024 training data strings and therefore

has a maximal fitness value of one. At generation 70 for instance, the evolved finite-

state automaton has genotype 1,715,127 and phenotype illustrated in Figure 7.4. It

is easy to see how this finite-state automaton reduces to that of Figure 7.1: in Figure

7.4, there does not exist a transition to state q0, which implies that this state can be

deleted. It follows that states q2 and q3 may then be combined into a single state.

The resultant deterministic finite-state automaton is exactly the minimal one with

genotype 24.

Typically, the scheme averages 28 seconds to compute the output of 500 genera-

tions while running in MATLAB on a 2.50 GHz dual-core processor laptop with 4.00

GB of RAM and the Windows Vista operating system.
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Figure 7.2: Fitness of the evolved deterministic finite-state automaton per generation.
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Figure 7.3: Natural number genotypes per generation.
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Q = {q0, q1, q2, q3}, Σ = {1, 0}, s = {q1}, A = {q0, q1}

q σ δ(q, σ)
q0 1 q3

q0 0 q2

q1 1 q1

q1 0 q2

q2 1 q3

q2 0 q1

q3 1 q3

q3 0 q1

0

0 1

0

0

1

1 1

q0 q1 q2 q3

Figure 7.4: An evolved deterministic finite-state automaton that accepts a string with
an even number of zeros.

7.3.2 Speciation

Inspection of Figures 7.2 and 7.3 reveals that there is more than one viable geno-

type (or deterministic finite-state automaton). One set of viable genotypes is found

between generations 67 and 238, another set from generations 263 through 364, and

yet more sets between generations 372 and 381, between generations 441 and 476,

and between generations 495 and 500. The natural number genotypes in these sets

are listed in Table 7.1. The figures and table demonstrate that speciation takes place

as a consequence of selective evolutionary generation.
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Table 7.1: Speciation Caused by Selective Evolutionary Generation

Set Number
(Species Number)

Generation
Range

Set Members Set
Cardinality

Common
Members

1 (1) 67–238 1395571, 1395573, 1395575, 1395635, 1395719, 1395847,
1399731, 1399735, 1399815, 1403895, 1403911, 1407991,
1408023, 1412087, 1412103, 1412215, 1412231, 1416183,
1424307, 1428403, 1432499, 1432503, 1432631, 1440691,
1440759, 1440791, 1440823, 1449015, 1453047, 1469431,
1657717, 1661959, 1666039, 1666055, 1715127, 1715191,

1715383, 1780919

38 1395847,
with Set 2

2 (1) 263–364 1199175, 1199239, 1215623, 1395639, 1395847, 1420423,
1428407, 1428535, 1428551, 1428567, 1428615, 1428631,
1428679, 1436807, 1436823, 1436839, 1436871, 1461383,

1477767, 1657783

20 1395847,
with Set 1

3 (1) 372–381 2264151 1 -

4 (1) 441–476 2583970, 2584482, 2584674, 2584738, 2584742, 2584930,
2586790, 2602918, 2603174

9 -

5(1) 495–500 2602914 1 -
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7.3.3 Physiology

The physical structures of an evolvant, its physiology [105], vary between species

but are common within any given species. Here, we identify the physiological char-

acteristics of a finite-state automata species that infers the chosen grammar. A BFS

search reveals that all of the genotypes listed in Table 7.1 belong to the same species;

hence, we consider the phenotypes of the elements of all five sets. We also note

that the evolutionary process in nature does not affect the evolved physiology. We

illustrate this aspect by including the grammar-inferring finite-state automaton with

genotype 5,105 (Figure 7.5), also a member of the same species, in our discussion.

This finite-state automaton emerged in a different selective evolutionary generation

trial, and is not a member of any of the sets in Table 7.1.

Q = {q0, q1, q2}, Σ = {1, 0}, s = {q0}, A = {q0, q2}

q σ δ(q, σ)
q0 1 q2

q0 0 q1

q1 1 q1

q1 0 q0

q2 1 q2

q2 0 q1

0

0 0

1

1 1

q0 q1 q2

Figure 7.5: Deterministic grammar-inferring finite-state automaton evolved in a sep-
arate trial with genotype 5,105.

At first glance, the state transition diagrams of all three finite-state automata in

Figures 7.1, 7.4, and 7.5 are quite different. However, the following characteristics
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are common, and indeed fundamental, if a finite-state automaton is to recognize the

chosen grammar.

1. A zero bit input causes a state transition from an accept state to a reject state,

and vice-versa.

2. A one bit input causes a state transition from an accept state to another accept

state, and from a reject state to another reject state.

3. An exception to the above occurs when the start state is a reject state, and

this exception affects only the start state transitions. When the start state is a

reject state, a first bit input of zero causes a state transition to another reject

state. If the first bit input is a one, a state transition is made from the start

state to an accept state. In both cases, the start state is never transitioned to

again.

These characteristics are easy to predict and identify due to the simplicity of the

chosen grammar. Yet the point remains that selective evolutionary generation mimics

biological evolution, yielding cells that have common physiology.

7.3.4 Resilience

Suppose that at generation 151 in Figures 7.2 and 7.3, the grammar to be inferred

changes to the set of all strings in {1, 0}∗ that have an even number of ones. A

minimal deterministic finite-state automaton that recognizes the new grammar now

corresponds to the number 27, and is drawn in Figure 7.6.

Figures 7.7 and 7.8 illustrate a sample run where the acceptability of the training

data set changes at generation 151. As the figures demonstrate, the SEGS is resilient

and recovers to find a viable finite-state automaton within 7 generations. In fact,

a new species is evolved; the viable genotypes found in this simulation are listed in

Table 7.2.
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Q = {q0, q1}, Σ = {1, 0}, s = {q0}, A = {q0}

q σ δ(q, σ)
q0 1 q1

q0 0 q0

q1 1 q0

q1 0 q1

1

1

0 0

q0 q1

Figure 7.6: Minimal deterministic finite-state automaton that accepts a string with
an even number of ones.
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Figure 7.7: Fitness of the evolved deterministic finite-state automaton per generation.
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Figure 7.8: Natural number genotypes per generation.

7.3.5 Morphology

Different natural species have common physiological traits that enable basic func-

tions. For instance, locomotion utilizes flagella, fins, wings, legs or other kinds of

limbs, and energy production utilizes a metabolic system. Similarly, the recognition

of a grammar by a finite-state automaton requires that a common architecture be

present, regardless of species. Selective evolutionary generation serves to refine this

morphological search. For the two species listed in Table 7.2, the common species

morphology is associated with a symmetry transformation, where the zeros and ones

of the state transitions are switched. That is, the set of unlabeled graphs of all finite-

state automata in the species that recognizes a grammar with an even number of zeros

is equal to the set of unlabeled graphs of all finite-state automata in the species that

recognizes a grammar with an even number of ones. Again, this common morphology

is easy to predict and identify due to the simplicity of the chosen grammars.
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Table 7.2: Resilient Speciation Caused by Selective Evolutionary Generation

Set Number
(Species Number)

Generation
Range

Set Members Set
Cardinality

Common
Members

1 (1) 67–150 1395719, 1395847, 1399815, 1403895, 1403911, 1412087,
1412103, 1412215, 1412231, 1453047, 1469431, 1661959,
1666039, 1666055, 1715127, 1715191, 1715383, 1780919

18 -

2 (2) 157–402 116731, 117243, 117755, 118779, 118781, 380925, 380926,
380927, 380930, 381438, 381442, 381694, 574716, 574720,
575744, 576000, 576008, 577542, 577544, 578056, 642052,
642564, 642568, 643078, 643080, 643582, 643836, 643838,

644092, 644100, 660220, 660476

32 -

3 (2) 440–442 575211 1 -
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CHAPTER 8

CONCLUSIONS

This dissertation has proposed a novel on-line behavior design strategy by demon-

strating and utilizing the fact that the characteristics of resilience and opportunism

are guaranteed by rational behavior, the use of which is desirable because it can lead

to a search that trades off prior information for search effort savings as quickly as pos-

sible. The ratio of the stationary probability of the optimizer of a fitness (or reward)

function to any other element’s stationary probability is given by

πI

πj

=

(

F (xI)

F (xj)

)N

, 1 ≤ j ≤ n, (8.1)

where F (xI) > F (xi) for all i implies that cell xI is the most likely. In the limit as N

approaches ∞, πI approaches 1, and standard optimization is recovered. The canon-

ical genetic algorithm with fitness proportional selection and the (1+1) evolutionary

strategy are particular cases of the proposed scheme.

Although rational behavior suggests dynamic transitions that are based on global

knowledge, this dissertation proves that rationality may be achieved through a se-

quence of local transitions,

X (t + 1) = Select(X (t), G(X (t),R(t)), N), (8.2)

that require limited knowledge of the reward function. Thus, each step of the pro-

posed scheme is also computationally inexpensive. The resultant process is Barker’s
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algorithm, which is a Markov Chain Monte Carlo method.

Resilience and opportunism are achieved at the expense of the mean hitting time

to the optimizer, and the trade-off is managed through the level of selectivity N . The

resilience of a SEGS is a conserved quantity, and any improvement to the resilience

of a particular element decreases the resilience of other elements.

Multi-selective generation is an extension of the viable SEGS technique; however,

the conditions for this extended scheme to behave rationally are highly restrictive.

Since the technique is a generalization of the canonical genetic algorithm with fitness

proportional selection, it is unlikely that a typical application of this genetic algorithm

behaves rationally. Multi-selective generation can find a fit candidate optimizer faster

than the original technique that it extends, but exceptions do exist.

The proposed technique has been successfully utilized without significant compu-

tational effort to 1) evolve gaits for flapping the wings of a flying vehicle in a way

that is resilient with respect to changes in flight conditions, 2) evolve a disturbance

rejection controller for a xerographic process in a way that is resilient with respect to

internal parameter variations, and 3) evolve finite-state automata that infer a regular

grammar in a way that is resilient with respect to changes in the grammar. Simulation

results from the former application are used to benchmark the technique. Simulation

results from the latter application demonstrate the occurrence of speciation, with

evolved finite-state automata exhibiting specific physiology and morphology that en-

able grammar inference.

8.1 Extensions and Future Work

The results in this dissertation may be extended to the case of multi-objective

(Pareto) optimization through a suitable definition of the fitness function. Future

work includes understanding the origins of the Lyapunov function that characterizes a
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SEGS, investigating the implications of time-reversibility, using measures of resilience

and opportunism to compare evolutionary computation strategies, and exploring par-

allel computing implementations of the theory in this dissertation. It is also believed

that a conservation law for resilience and mean hitting time exists, and preliminary

efforts toward formulating this law need to be advanced. Work on a control-theoretic

interpretation of the theory presented in this dissertation should continue too, since

this approach holds some promise for discovering conservation laws.

Some open questions to be addressed are the following.

• Are the SEGS results invariant with respect to diffeomorphisms of cell parame-

ters?

• What effect does incomplete knowledge of fitness (e.g., approximations or errors)

have on the SEGS results?

• If the evolution of a SEGS is observed, is it possible to separately infer the

fitness of the cells and the level of selectivity of the system?

• What is the level of selectivity in natural systems? Is this value the same for

all natural systems or does it differ? Why?

• What happens to the SEGS results when the level of selectivity is a function of

time?

• How are the SEGS results affected by limitations in the supply of a resource?

Although the results in this dissertation touch upon several open problems in

artificial life, complex systems, artificial intelligence, and robotics, the practical ap-

plication of selective evolutionary generation to these areas must be demonstrated in

the future.
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APPENDIX A

PROOFS FOR CHAPTER 4

Theorem 4.1.

Proof. To show that (4.2) implies Markov chain rational behavior, consider the ratio

of any πi to πj, i 6= j, where each satisfies (4.2). Equation (4.1) follows immediately.

To show that Markov chain rational behavior implies (4.2), we begin with

n
∑

k=1

πk = 1.

Dividing both sides of the equation by πi, we obtain

n
∑

k=1

πk

πi

=
1

πi

, 1 ≤ i ≤ n,

which, using (4.1), yields

n
∑

k=1

(

F (xk)

F (xi)

)N

=
1

πi

, 1 ≤ i ≤ n.

Multiplying by F (xi)
N and solving for πi yields (4.2), which completes the proof.
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Theorem 4.2.

Proof. We use the method of Karush-Kuhn-Tucker (KKT) multipliers to solve the

optimization problem

min
π1,...,πn

Φ(π) = −
n
∑

i=1

F (xi)
N ln(πi),

subject to
n
∑

i=1

πi − 1 = 0,

−πi < 0, 1 ≤ i ≤ n.

Let L(π1, . . . , πn, λ, µ1, . . . , µn) =

−
n
∑

i=1

F (xi)
N ln(πi) + λ

(

n
∑

i=1

πi − 1

)

−
n
∑

i=1

µiπi.

The KKT necessary conditions for optimality are

−F (xi)
N

πi

+ λ− µi = 0, 1 ≤ i ≤ n,

n
∑

i=1

πi − 1 = 0,

−πi < 0, 1 ≤ i ≤ n,

λ ≥ 0,

µi ≥ 0, 1 ≤ i ≤ n,

λ

(

n
∑

i=1

πi − 1

)

= 0,

µiπi = 0, 1 ≤ i ≤ n.
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The first necessary condition becomes

−F (xi)
N + λπi − µiπi = 0, 1 ≤ i ≤ n.

Since µiπi = 0 for all i, we obtain

−F (xi)
N + λπi = 0, 1 ≤ i ≤ n.

Next, the constraint πi > 0 for all i and the positive nature of F (xi)
N imply that

λ 6= 0. Therefore,

πi =
F (xi)

N

λ
, 1 ≤ i ≤ n.

n
∑

i=1

πi =
n
∑

i=1

F (xi)
N

λ
, 1 ≤ i ≤ n.

Since
n
∑

i=1
πi = 1, we find that

λ =
n
∑

i=1

F (xi)
N ,

and hence,

πi =
F (xi)

N

n
∑

k=1
F (xk)

N
, 1 ≤ i ≤ n.

Thus, the stationary distribution in (4.2) satisfies the first order necessary conditions

for optimality.

Moreover, we have

∂2Φ(π)

∂πj∂πi

= 0 for j 6= i,

∂2Φ(π)

∂π2
i

=
F (xi)

N

π2
i

> 0.

Hence, the optimization problem has a strictly convex cost function and linear con-

straints. Thus, the solution of the first order necessary conditions is the global opti-

mizer, which completes the proof.
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Theorem 4.3.

Proof. Similar to Theorem 4.2, we can use the method of Karush-Kuhn-Tucker (KKT)

multipliers to solve the following optimization problem for arbitrary ϕ ∈ Dn:

min
π∈Dn

−
n
∑

i=1

ϕi ln(πi),

which is equivalent to

min
π1,...,πn

Φ(π) = −
n
∑

i=1

ϕi ln(πi),

subject to
n
∑

i=1

πi − 1 = 0,

−πi < 0, 1 ≤ i ≤ n.

This is a scaled version of Theorem 4.2, and therefore the remainder of the proof is

omitted.

Theorem 4.4.

Proof. We use the method of Karush-Kuhn-Tucker (KKT) multipliers to solve the

optimization problem

max
ϕ1,...,ϕn

H(ϕ) = −
n
∑

i=1

ϕi ln(ϕi),

subject to
n
∑

i=1

ϕi − 1 = 0,

−ϕi < 0, 1 ≤ i ≤ n,

E [y(x)]−
n
∑

i=1

ϕiy(xi) = 0.
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Let L(ϕ1, . . . , ϕn, λ1, λ2, µ1, . . . , µn) =

−
n
∑

i=1

ϕi ln(ϕi) + λ1

(

n
∑

i=1

ϕi − 1

)

+ λ2

(

E [y(x)]−
n
∑

i=1

ϕiy(xi)

)

−
n
∑

i=1

µiϕi.

The KKT necessary conditions for optimality are

− ln ϕi − 1 + λ1 − λ2y(xi)− µi = 0, 1 ≤ i ≤ n,

n
∑

i=1

ϕi − 1 = 0,

−ϕi < 0, 1 ≤ i ≤ n,

λ1 ≥ 0,

λ2 ≥ 0,

µi ≥ 0, 1 ≤ i ≤ n,

λ1

(

n
∑

i=1

ϕi − 1

)

= 0,

λ2

(

E [y(x)]−
n
∑

i=1

ϕiy(xi)

)

= 0,

µiϕi = 0, 1 ≤ i ≤ n.

The first necessary condition becomes

− ln ϕi = λ1 − λ2y(xi)− µi − 1, 1 ≤ i ≤ n,

ϕi = e(λ1−λ2y(xi)−µi−1), 1 ≤ i ≤ n.

Since ϕi 6= 0 for all i, µi = 0 for all i. We obtain

ϕi = eλ1−1 · e−λ2y(xi), 1 ≤ i ≤ n,
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or equivalently,

ϕi = αe−βy(xi), 1 ≤ i ≤ n.

Theorem 4.5.

Proof. We prove both parts of this theorem directly. Consider that

ρij

∣

∣

∣

∣

N=0
=
−Nπiπj

F (xj)

∣

∣

∣

∣

∣

N=0

,

=
−N

F (xj)

F (xi)
N

n
∑

k=1
F (xk)

N

F (xj)
N

n
∑

k=1
F (xk)

N

∣

∣

∣

∣

∣

∣

∣

∣

N=0

.

By substitution, ρij

∣

∣

∣

∣

N=0
is 0. Similarly,

ρii

∣

∣

∣

∣

N=0
=

Nπi (1− πi)

F (xi)

∣

∣

∣

∣

∣

N=0

,

=
N

F (xi)

F (xi)
N

n
∑

k=1
F (xk)

N









1−
F (xi)

N

n
∑

k=1
F (xk)

N









∣

∣

∣

∣

∣

∣

∣

∣

N=0

.

By substitution, ρii

∣

∣

∣

∣

N=0
is also 0.

For the second part of the theorem, we need the following lemma.

Lemma A.1. Let 0 < α < 1. Then lim
N→∞

NαN = 0.

Proof of Lemma A.1.

lim
N→∞

NαN = lim
N→∞

N

α−N
= lim

N→∞

1

−(α)−N ln α
(by L’Hôpital’s rule),

= lim
N→∞

−αN

ln α
= 0.
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Let I be the index for which F (xi) is maximized, and assume that I is unique.

Then,

lim
N→∞

F (xj)
N

F (xI)
N = 0, ∀j 6= I, and

lim
N→∞

n
∑

k=1

F (xk)
N

F (xI)
N = 1.

Consider that

lim
N→∞

ρij = lim
N→0

−Nπiπj

F (xj)
,

= lim
N→∞

−N

F (xj)

F (xi)
N

n
∑

k=1
F (xk)

N

F (xj)
N

n
∑

k=1
F (xk)

N
,

= lim
N→∞

−N

F (xj)

F (xi)
N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

F (xj)
N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

.

Now for all i 6= j, where i 6= I and j 6= I, the application of Lemma A.1 with

α = F (xi)
F (xI)

implies that lim
N→∞

ρij = 0.

If i = I 6= j, then the application of Lemma A.1 with α = F (xj)

F (xI)
implies that

lim
N→∞

ρij = 0.

Lastly, if i 6= j = I, then the application of Lemma A.1 with α = F (xi)
F (xI)

implies

that lim
N→∞

ρij = 0.

Thus, for all i and j, lim
N→∞

ρij = 0.

Similarly,

lim
N→∞

ρii = lim
N→0

Nπi (1− πi)

F (xi)
,

= lim
N→∞

N

F (xi)

F (xi)
N

n
∑

k=1
F (xk)

N









1−
F (xi)

N

n
∑

k=1
F (xk)

N









,
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= lim
N→∞

N

F (xi)

F (xi)
N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

n
∑

k=1
k 6=i

F (xk)N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

.

If i 6= I, then the application of Lemma A.1 with α = F (xi)
F (xI)

implies that lim
N→∞

ρii =

0.

If i = I, then we have

lim
N→∞

ρii = lim
N→∞

N

F (xI)

F (xI)N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

n
∑

k=1
k 6=I

F (xk)N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

.

The application of Lemma A.1 with α = F (xk)
F (xI)

a total of n− 1 times implies that

lim
N→∞

ρii = 0.

Thus, for all i, lim
N→∞

ρii = 0. This completes the proof.

Theorem 4.6.

Proof. To show that rational behavior implies that the time-homogeneous, irreducible,

ergodic Markov chain (X,P) is resilient and opportunistic, consider (4.23) and (4.24),

which hold because the stationary distribution π has the closed form expression (4.2).

By Definition 4.1, πi > 0 ∀i since the Markov chain is ergodic, N > 0 since the

Markov chain is selective, and F (xi) > 0 ∀i since the fitness function is positive.

Hence, ρij 6= 0 ∀i and j, and (X,P) is resilient and opportunistic. This completes

the proof.

Theorem 4.7.

Proof. To show that ergodicity is a necessary condition for the time-homogeneous,

irreducible, ergodic Markov chain (X,P) to be resilient and opportunistic, suppose

that the chain is not ergodic. Then the chain is either not positive recurrent (i.e., it is

null recurrent or transient) or it is periodic. If the chain is not positive recurrent, then
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there exists a state, xi, with zero stationary probability. Suppose now that the fitness

function is perturbed such that the fitness of this state, F (xi), becomes the optimal

fitness value. Since the stationary probability of xi is zero, state xi is never visited,

and therefore never considered as the optimizer. We have ρii = ∂πi/∂F (xi) = 0,

and hence (X,P) is not resilient or opportunistic. If the chain is periodic, then the

stationary probability distribution does not exist, and resilience and opportunism are

not defined. This completes the proof.

Lemma 4.1.

Proof. We prove the claim directly. Using (4.30), we have

n
∑

j=1

γij =
n
∑

j=1

m
∑

k=1

δijkpk,

=
m
∑

k=1

n
∑

j=1

δijkpk,

=
m
∑

k=1

pk

n
∑

j=1

δijk.

Now,
n
∑

j=1
δijk = 1 because cell xi and resource rk generate a unique cell G(xi, rk).

Therefore,
n
∑

j=1

γij =
m
∑

k=1

pk · 1 =
m
∑

k=1

pk = 1.

This completes the proof.

Theorem 4.8.

Proof. We prove the claim directly. Using (4.34), we have

n
∑

j=1

Pij =
n
∑

j=1
j 6=i

Pij + Pii,

=
n
∑

j=1
j 6=i

1

1 +
(

F (xi)
F (xj)

)N γij + γii +
n
∑

j=1
j 6=i

1

1 +
(

F (xj)

F (xi)

)N γij,
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=
n
∑

j=1
j 6=i







1

1 +
(

F (xi)
F (xj)

)N +
1

1 +
(

F (xj)

F (xi)

)N





 γij + γii,

=
n
∑

j=1
j 6=i

γij + γii,

=
n
∑

j=1

γij = 1.

This completes the proof.

Theorem 4.9.

Proof. This is a direct proof. We begin by noting that

lim
N→∞

Pij = lim
N→∞

1

1 +
(

F (xi)
F (xj)

)N γij,

=



















γij, if F (xi) < F (xj),

0, if F (xi) > F (xj),

and

lim
N→∞

Pii = lim
N→∞









γii +
n
∑

j=1
j 6=i

1

1 +
(

F (xj)

F (xi)

)N γij









,

= γii +
n
∑

j=1
j 6=i

F (xi)>F (xj)

γij,

= 1−
n
∑

j=1
j 6=i

F (xi)<F (xj)

γij.

Without loss of generality, assume that the cells of the SEGS are ordered according

to decreasing fitness value, so that the index I = 1. The matrix lim
N→∞

P is therefore

a lower triangular matrix. Furthermore, lim
N→∞

P11 = 1.
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Consider the row vector v =
[

1 0 . . . 0

]

. The product of this row vector with

the lower triangular matrix lim
N→∞

P is the first row of lim
N→∞

P =
[

1 0 . . . 0

]

= v.

Therefore, the row vector v =
[

1 0 . . . 0

]

is a left eigenvector of lim
N→∞

P, with

corresponding eigenvalue 1 (i.e., v lim
N→∞

P = v). Hence, lim
N→∞

π = v, and the proof is

complete.

Theorem 4.10.

Proof. We directly show that the row vector π =
[

π1 π2 . . . πn

]

, where πi satisfies

(4.2), is a left eigenvector of P, the matrix of transition probabilities for Γ, with

corresponding eigenvalue 1. If the matrix of generation probabilities, γ, is symmetric,

then

γij = γji, 1 ≤ i ≤ n, 1 ≤ j ≤ n,

or equivalently,
m
∑

k=1

δijkpk =
m
∑

k=1

δjikpk.

Consider the row vector v = πP. Then

vj =
n
∑

i=1

πiPij,

=
n
∑

i=1
i6=j

πiPij + πjPjj,

=
n
∑

i=1
i6=j

πiPij + πj









1−
n
∑

i=1
i6=j

Pji









,

=
n
∑

i=1
i6=j

πiPij + πj −
n
∑

i=1
i6=j

πjPji.
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From (4.2), (4.30), and (4.34), vj becomes

n
∑

i=1
i6=j









F (xi)
N

n
∑

a=1
F (xa)

N

F (xj)
N

F (xi)
N + F (xj)

N

m
∑

k=1

δijkpk









+πj

−
n
∑

i=1
i6=j









F (xj)
N

n
∑

a=1
F (xa)

N

F (xi)
N

F (xi)
N + F (xj)

N

m
∑

k=1

δjikpk









.

This reduces to πj because γ is symmetric. Hence, π = πP.

Theorem 4.11.

Proof. We directly show that πiPij = πjPji for all i and j. If the matrix of generation

probabilities, γ, is symmetric, then

γij = γji, 1 ≤ i ≤ n, 1 ≤ j ≤ n,

or equivalently,
m
∑

k=1

δijkpk =
m
∑

k=1

δjikpk, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Consider πiPij. Using (4.2), (4.30), and (4.34), we obtain

πiPij =
F (xi)

N

n
∑

a=1
F (xa)

N

F (xj)
N

F (xi)
N + F (xj)

N

m
∑

k=1

δijkpk,

=
F (xj)

N

n
∑

a=1
F (xa)

N

F (xi)
N

F (xi)
N + F (xj)

N

m
∑

k=1

δjikpk,

= πjPji, 1 ≤ i ≤ n, 1 ≤ j ≤ n,

where the second equation uses the symmetry of γ. Hence, the Markov chain repre-

senting the stochastic dynamics of the ergodic SEGS is time-reversible.
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Theorem 4.12.

Proof. We use Lyapunov’s Method and the LaSalle Invariance Principle [184, 185] to

directly prove this theorem.

For the ergodic SEGS Γ = (X,R, P,G, F ) with a symmetric matrix of generation

probabilities, γ, consider the discrete-time dynamic system described by

p(t + 1) = p(t)P,

where P is the matrix of transition probabilities for Γ, and p(t) is an n-dimensional

row vector at time t. Here, p(t) is the ergodic probability distribution over the

states at time t, and therefore the components of p satisfy pi(t) > 0, 1 ≤ i ≤ n,

and
n
∑

i=1
pi(t) = 1. Since the SEGS is ergodic and irreducible, a unique equilibrium

stationary distribution for these dynamics exists, lim
t→∞

p(t) = π, with components πi

satisfying (4.2).

Let us define q(t) = p(t) − π, so that the transformed discrete-time dynamic

system,

q(t + 1) = (q(t) + π)P− π,

has an equilibrium at the origin. The function

V (p(t)) = −
n
∑

i=1

ϕi ln

(

pi(t)

ϕi

)

,

where ϕi satisfies (4.6), may be rewritten as

V (q(t) + π) = −
n
∑

i=1

ϕi ln

(

qi(t) + πi

ϕi

)

.

We first check the value of this transformed candidate Lyapunov equation at the
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origin of the transformed system. We have

V (0 + π) = −
n
∑

i=1

ϕi ln

(

πi

ϕi

)

= −
n
∑

i=1

ϕi ln 1 = 0,

because π = ϕ.

Next, we have to show that ∀q(t) 6= 0, V (q(t) + π) > 0. But this follows directly

from (the second equivalent restatement of) Theorem 4.3. This is because ∀q(t) 6= 0,

V (q(t) + π) = −
n
∑

i=1

ϕi ln

(

pi(t)

ϕi

)

,

which is always positive according to the theorem.

Now consider ∆V = V (q(t + 1) + π)− V (q(t) + π). In the equations that follow,

we assume, without loss of generality, that the fitness value of each cell of the SEGS

is greater than or equal to one. (After all, if there exists an i such that 0 < F (xi) < 1,

then it is possible to find a K ∈ R
+ to scale all the fitness values upward, so that for

all i, KF (xi) ≥ 1. Define the new fitnesses F ′(xi) = KF (xi), 1 ≤ i ≤ n and observe

that the Markov chain representation of the SEGS is unchanged).

∆V = V (p(t + 1))− V (p(t)),

= −
n
∑

j=1

ϕj ln

(

pj(t + 1)

ϕj

)

+
n
∑

j=1

ϕj ln

(

pj(t)

ϕj

)

,

= −
n
∑

j=1

ϕj ln

(

pj(t + 1)

pj(t)

)

,

= −
n
∑

j=1

ϕj ln









n
∑

i=1
pi(t)Pij

pj(t)









,

= −
n
∑

j=1

ϕj ln

(

1

pj(t)

n
∑

i=1

pi(t)F (xj)
N

F (xi)N + F (xj)N

)

,

= −
n
∑

j=1

ϕj ln

(

F (xj)
N

pj(t)

n
∑

i=1

pi(t)

F (xi)N + F (xj)N

)

.
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Now because we have assumed, without loss of generality, that all fitnesses are greater

than or equal to one, we have

F (xj)
N

pj(t)

n
∑

i=1

pi(t)

F (xi)N + F (xj)N

≥
n
∑

i=1

pi(t)

F (xi)N + F (xj)N
,

≥
n
∑

i=1

pi(t),

≥1.

Therefore, we obtain

∆V ≤ −
n
∑

j=1

ϕj ln 1, or

∆V ≤ 0.

That is, ∆V is negative semi-definite, as required by Lyapunov’s method.

To apply LaSalle’s Invariance Principle, we have to find Q = {q(t)|∆V = 0}.

Note that

∆V = 0,

= −
n
∑

j=1

ϕj ln 1,

= −
n
∑

j=1

ϕj ln

(

n
∑

i=1

Pji

)

,

which can be rewritten with Bayes’ Rule as

∆V = −
n
∑

j=1

ϕj ln

(

n
∑

i=1

πi

πj

Pij

)

.
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We had previously shown that

∆V = −
n
∑

j=1

ϕj ln









n
∑

i=1
pi(t)Pij

pj(t)









.

Thus, ∆V = 0 implies that πi = pi(t), 1 ≤ i ≤ n. But from the definition of q(t),

πi = pi(t)− qi(t),

and we must have that ∆V = 0 implies that qi(t) = 0, 1 ≤ i ≤ n. Therefore, the only

solution of the transformed discrete-time dynamic system that can stay identically

in Q is the trivial solution q(t) ≡ 0. Hence, the origin is an asymptotically stable

equilibrium for the transformed discrete-time dynamic system, and therefore, the

function

V (p(t)) = −
n
∑

i=1

ϕi ln

(

pi(t)

ϕi

)

,

is a Lyapunov function for the original system with the set of vectors p with compo-

nents pi(t) > 0, 1 ≤ i ≤ n, and
n
∑

i=1
pi(t) = 1 forming an invariant manifold. Moreover,

since the Lyapunov function is radially unbounded, the equilibrium is globally asymp-

totically stable, as claimed.

Theorem 4.13.

Proof. We first prove directly that σiI converges to a constant value for each i as N

approaches ∞, before inductively showing that the value of σiI does indeed decrease

with increasing N .

We begin by noting that

lim
N→∞

Pij = lim
N→∞

1

1 +
(

F (xi)
F (xj)

)N γij,
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=



















γij, if F (xi) < F (xj),

0, if F (xi) > F (xj),

and

lim
N→∞

Pii = lim
N→∞









γii +
n
∑

j=1
j 6=i

1

1 +
(

F (xj)

F (xi)

)N γij









,

= γii +
n
∑

j=1
j 6=i

F (xi)>F (xj)

γij,

= 1−
n
∑

j=1
j 6=i

F (xi)<F (xj)

γij.

Without loss of generality, assume that the cells of the SEGS are ordered according

to decreasing fitness value, so that the index I = 1. The matrix lim
N→∞

P is therefore

a lower triangular matrix.

We seek

lim
N→∞

σ1 = lim
N→∞

(I−D1P)−1D11,

= (I−D1 lim
N→∞

P)−1D11,

where (I−D1 lim
N→∞

P)−1 always exists due to the following.

(i) lim
N→∞

P is a lower triangular matrix with full rank. All of the lower triangular

elements are non-zero.

(ii) D1 is a lower triangular matrix with rank n− 1.

(iii) (D1 lim
N→∞

P) is a matrix with zeros in row one, and elements that are equal to

lim
N→∞

P in all other rows. Hence, (D1 lim
N→∞

P) has rank n− 1. Since this matrix

is the product of lower triangular matrices, it is also lower triangular.
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(iv) (I−D1 lim
N→∞

P) is a lower triangular matrix because it is the difference of lower

triangular matrices. All lower triangular elements of this matrix are non-zero,

with the matrix element (I−D1 lim
N→∞

P)11 = 1. Thus, (I−D1 lim
N→∞

P) has full

rank.

Since (I−D1 lim
N→∞

P) is a lower triangular matrix with full rank, the equation

(I−D1 lim
N→∞

P) lim
N→∞

σ1 = D11,

may be solved by the iterative process of forward substitution to obtain unique con-

stant values of lim
N→∞

σi1 for each i. For instance,

lim
N→∞

σ11 = 0,

lim
N→∞

σ21 =
1

γ21

,

lim
N→∞

σ31 =
1 + γ32( lim

N→∞
σ21)

γ31 + γ32

,

=
1 + γ32

γ21

γ31 + γ32

,

lim
N→∞

σ41 =
1 + γ42( lim

N→∞
σ21) + γ43( lim

N→∞
σ31)

γ41 + γ42 + γ43

,

=
1 + γ42

γ21
+ γ43

(

1+
γ32
γ21

γ31+γ32

)

γ41 + γ42 + γ43

,

and so on. This completes the convergence part of the proof.

We next use induction on the cell index to show that σi1 is a strictly decreasing

function of N . First, consider that

σ21 =

n
∑

k=1
k 6=2

P2k (σk1 + 1) + P22

1− P22

.
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Hence,

lim
N→∞

σ21 = lim
N→∞

1 +
n
∑

k=1
k 6=2

P2kσk1

1− P22

,

=

lim
N→∞





1 +
n
∑

k=1
k 6=2

P2kσk1







lim
N→∞

(1− P22)
,

=

1 + lim
N→∞







n
∑

k=1
k 6=2

P2kσk1







1− (1− γ21)
,

=
1

γ21

+
1

γ21

lim
N→∞









n
∑

k=1
k 6=2

P2kσk1









.

Comparing this expression to the result that was calculated by forward substitution

above,

lim
N→∞

n
∑

k=1
k 6=2

P2kσk1 must decrease to 0 as N increases. Therefore, σ21 decreases as N

increases.

For the induction hypothesis, assume that for any s−1 where 2 ≤ (s−1) ≤ (n−1),

we have that for all t where 2 ≤ t ≤ (s− 1), the mean hitting time σt1 decreases with

N . We now show that σs1 is a decreasing function of N .

Consider that

σs1 =

n
∑

k=1
k 6=s

Psk (σk1 + 1) + Pss

1− Pss

.

Hence,

lim
N→∞

σs1 = lim
N→∞

1 +
n
∑

k=1
k 6=s

Pskσk1

1− Pss

,
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=

lim
N→∞





1 +
n
∑

k=1
k 6=s

Pskσk1







lim
N→∞

(1− Pss)
,

=

1 + lim
N→∞







n
∑

k=1
k 6=s

Pskσk1







s−1
∑

k=1
γsk

,

=

1 + lim
N→∞

(

s−1
∑

k=1
Pskσk1 +

n
∑

k=s+1
Pskσk1

)

s−1
∑

k=1
γsk

.

Comparing this expression to the general result calculated by forward substitution,

lim
N→∞

n
∑

k=s+1
Pskσk1 must decrease to 0 as N increases. By the induction hypothesis,

lim
N→∞

s−1
∑

k=1
Pskσk1 decreases with increasing N . Therefore, σs1 is a decreasing function

of N .

Hence, for all i where 2 ≤ i ≤ n, an increase in the level of selectivity produces a

corresponding decrease in the mean hitting time to the fittest cell, σi1, with lim
N→∞

σi1

approaching a unique constant value for each i.

Theorem 4.14.

Proof.

1. We directly show that the row vector π =
[

π1 π2 . . . πn

]

, where πi satisfies

(4.2), is a left eigenvector of P, the matrix of transition probabilities for Γ, with

corresponding eigenvalue 1. If the descendancy matrix, δ, is symmetric, then

δij = δji, 1 ≤ i ≤ n, 1 ≤ j ≤ n.
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Consider the row vector v = πP. Then

vj =
n
∑

i=1

πiPij,

=
n
∑

i=1
i6=j

πiPij + πjPjj,

=
n
∑

i=1
i6=j

πiPij + πj









1−
n
∑

i=1
i6=j

Pji









,

=
n
∑

i=1
i6=j

πiPij + πj −
n
∑

i=1
i6=j

πjPji.

From (4.2) and (4.90), vj becomes

n
∑

i=1
i6=j









F (xi)
N

n
∑

a=1
F (xa)

N

F (xj)
N

m
∑

k=1
F (G (xi, rk))

N + F (xi)
N

δij









+πj

−
n
∑

i=1
i6=j









F (xj)
N

n
∑

a=1
F (xa)

N

F (xi)
N

m
∑

k=1
F (G (xj, rk))

N + F (xj)
N

δji









.

This reduces to πj because of assumptions i) and ii). Hence, π = πP.

2. We directly show that πiPij = πjPji for all i and j. If the descendancy matrix,

δ, is symmetric, then

δij = δji, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Consider πiPij. Using (4.2) and (4.90), we obtain

πiPij =
F (xi)

N

n
∑

a=1
F (xa)

N

F (xj)
N

m
∑

k=1
F (G (xi, rk))

N + F (xi)
N

δij,
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=
F (xj)

N

n
∑

a=1
F (xa)

N

F (xi)
N

m
∑

k=1
F (G (xj, rk))

N + F (xj)
N

δji,

= πjPji, 1 ≤ i ≤ n, 1 ≤ j ≤ n,

where the second equation uses assumptions i) and ii). Hence, the Markov chain

representing the stochastic dynamics of the ergodic SEGS is time-reversible.

Theorem 4.15.

Proof. We directly show that (4.93) and (4.94) follow from the stated definition of

rational behavior. Consider the stationary probability distribution

π = πP.

Equivalently,

πj =
n
∑

i=1

πiPij,

=
n
∑

i=1

πi
F (xj)

N

m
∑

k=1
F (G (xi, rk))

N + F (xi)
N

δij,

where we have made use of (4.90). Substituting (4.2), we obtain

F (xj)
N =

n
∑

i=1

F (xi)
N F (xj)

N

m
∑

k=1
F (G (xi, rk))

N + F (xi)
N

δij,

which can be simplified to

1 =
n
∑

i=1

F (xi)
N

m
∑

k=1
F (G (xi, rk))

N + F (xi)
N

δij.
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Since
n
∑

i=1
Pji = 1, we can write

n
∑

i=1

Pji =
n
∑

i=1

F (xi)
N

m
∑

k=1
F (G (xi, rk))

N + F (xi)
N

δij,

which, using (4.90) again, is

n
∑

i=1

F (xi)
N

m
∑

k=1
F (G (xj, rk))

N + F (xj)
N

δji =
n
∑

i=1

F (xi)
N

m
∑

k=1
F (G (xi, rk))

N + F (xi)
N

δij.

Now, if the Markov chain representing the stochastic dynamics of the ergodic

MSGS is also time-reversible, then

πiPij = πjPji.

Substituting (4.2) and (4.90),

F (xi)
N F (xj)

N

m
∑

k=1
F (G (xi, rk))

N + F (xi)
N

δij = F (xj)
N F (xi)

N

m
∑

k=1
F (G (xj, rk))

N + F (xj)
N

δji,

which simplifies to

δji
m
∑

k=1
F (G (xj, rk))

N + F (xj)
N

=
δij

m
∑

k=1
F (G (xi, rk))

N + F (xi)
N

.
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APPENDIX B

SELECTED PSEUDOCODE

Pseudocode: Convert input, a natural number, into a {1, 0} deterministic finite-

state automaton (DFSA).

Require: input ∈ N

Output: [NumStates, s, A,Delta]

// Some preliminaries.

1: MaxDFSANumStates← 25 // Maximum number of DFSA states can be varied,

as required.

2: NatNumBias← 0

3: for counter = 1 to MaxDFSANumStates do

4: DeltaNaturalNumber(counter)← (2 ˆ counter) ∗ (counter ˆ (2 ∗ counter + 1))

5: NaturalNumberLimit(counter)← DeltaNaturalNumber(counter) +

NatNumBias

6: NatNumBias← NaturalNumberLimit(counter)

7: end for

// Determine the number of states in the DFSA.

8: NumStates← 1

9: while input > NaturalNumberLimit(NumStates) do

10: NumStates← NumStates + 1

11: end while
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// Determine the index of the start state.

12: if NumStates > 1 then

13: Remainder ← input−NaturalNumberLimit(NumStates− 1)

14: else

15: Remainder ← input

16: end if

17: s← ⌈Remainder/(2 ˆ NumStates)/(NumStates ˆ (2 ∗NumStates))⌉

// Determine the cardinality of the set of accept states, CardA.

18: if s > 1 then

19: Remainder2← Remainder mod

((s− 1) ∗ (2 ˆ NumStates) ∗ (NumStates ˆ (2 ∗NumStates)))

20: else

21: Remainder2← Remainder mod

((2 ˆ NumStates) ∗ (NumStates ˆ (2 ∗NumStates)))

22: end if

23: CardA← 0

24: i← 0

25: while Remainder2 > 0 do

26: Remainder2← Remainder2−








NumStates

i









∗ (NumStates ˆ (2 ∗NumStates))

27: i← i + 1

28: end while

29: if i > 0 then

30: CardA← i− 1

31: Remainder2← Remainder2 +








NumStates

CardA









∗ (NumStates ˆ (2 ∗NumStates))
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32: else

33: CardA← NumStates

34: end if

// Determine the set of accept states, A.

35: Initialize A.

36: if CardA > 0 then

37: if Remainder2 mod (NumStates ˆ (2 ∗NumStates)) > 0 then

38: Bias← ⌊Remainder2/ (NumStates ˆ (2 ∗NumStates))⌋

39: else

40: if Remainder2 > 0 then

41: Bias← ⌊(Remainder2− 1) / (NumStates ˆ (2 ∗NumStates))⌋

42: else

43: Bias← NumStates− CardA

44: end if

45: end if

46: for ctr = 1 to CardA do

47: if ctr + Bias <= NumStates then

48: A← [A, ctr + Bias]

49: else

50: A← [A, ctr + Bias−NumStates]

51: end if

52: end for

53: else

54: Bias← 0

55: end if

// Determine the Delta transitions.

56: Remainder3← Remainder2 mod (Bias ∗ (NumStates ˆ (2 ∗NumStates)))
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57: if NumStates > 1 then

58: DeltaString ← conversion of Remainder3 to a base of NumStates

59: if DeltaString.length < 2 ∗NumStates then

60: LengthToAdd← 2 ∗NumStates−DeltaString.length

61: for j = 1 to LengthToAdd do

62: DeltaString ← concatenate the string ‘0’ with DeltaString

63: end for

64: else if DeltaString.length > 2 ∗NumStates then

65: LengthToSubtract← DeltaString.length− 2 ∗NumStates

66: TempString ← DeltaString

67: DeltaString ← the empty string ‘’

68: for j = 1 + LengthToSubtract to TempString.length do

69: DeltaString(j − LengthToSubtract)← TempString(j)

70: end for

71: end if

72: else

73: DeltaString ← the string ‘0’

74: end if

75: Initialize Delta.

// Add the transitions in matrix form.

76: for k = 1 to DeltaString.length step 2 do

77: if DeltaString.length > 1 then

78: Delta← [Delta; (DeltaString(k)) converted to a number, (DeltaString(k +

1)) converted to a number] // i.e., add a two column row.

79: else

80: Delta← [Delta; (DeltaString(k)) converted to a number] // i.e., add a row.

81: end if
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82: end for

// Shift the state indices to start at 1 instead of 0.

83: if NumStates > 1 then

84: Delta← Delta+ a matrix of ones with dimensions NumStates× 2

85: else

86: Delta← Delta + 1

87: end if

154



REFERENCES

155



REFERENCES

[1] Michael J. Atallah, editor. Algorithms and Theory of Computation Handbook.
CRC Press, 1999.

[2] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2009.

[3] Harold W. Kuhn and Albert W. Tucker. Nonlinear programming. In Proceed-
ings of the Second Berkeley Symposium of Mathematical Statistics and Proba-
bility. University of California Press, 1951.

[4] J. E. Dennis, Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. SIAM, 1996.

[5] James M. Ortega and Werner C. Rheinboldt. Iterative Solution of Nonlinear
Equations in Several Variables. SIAM, 2000.

[6] David G. Luenberger. Linear and Nonlinear Programming. Kluwer Academic
Publishers, 2nd edition, 2003.

[7] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[8] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Anal-
ysis. Cambridge University Press, 1998.

[9] Amos Fiat and Gerhard J. Woeginger, editors. Online Algorithms: The State
of the Art, volume 1442 of Lecture Notes in Computer Science. Springer, 1998.

[10] N. Ascheuer, Martin Grötschel, Sven O. Krumke, and Jörg Rambau. Com-
binatorial online optimization. In Peter Kall and Hans-Jakob Lüthi, editors,
Operations Research Proceedings 1998, pages 21–37. Springer, 1999.

[11] Martin Grötschel, Sven O. Krumke, and Jörg Rambau, editors. Online Opti-
mization of Large Scale Systems. Springer, 2001.

[12] Susanne Albers. Online algorithms: A survey. Mathematical Programming,
97(1–2):3–26, July 2003.

[13] Kartik B. Ariyur and Miroslav Krstić. Real-Time Optimization by Extremum-
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